Sulfamethoxazole and Trimethoprim Tablets

drug-information.ru

|Sulfamethoxazole and Trimethoprim Tablets

Drugs search, click the first letter of a drug name:


| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9  Home

Sulfamethoxazole and Trimethoprim

Dosage Form: Tablets

Rx only

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Sulfamethoxazole and Trimethoprim tablets and other antibacterial drugs, Sulfamethoxazole and Trimethoprim tablets should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

Sulfamethoxazole and Trimethoprim Description

Sulfamethoxazole and Trimethoprim is a synthetic antibacterial combination product available in DS (double strength) tablets, each containing 800 mg sulfamethoxazole and 160 mg trimethoprim; in tablets, each containing 400 mg sulfamethoxazole and 80 mg trimethoprim for oral administration.

Sulfamethoxazole is N1 - (5-methyl-3-isoxazolyl)sulfanilamide; the molecular formula is C10H11N3O3S. It is almost white, odorless, tasteless compound with a molecular weight of 253.28 and the following structural formula:

Trimethoprim is 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine; the molecular formula is C14H18N4O3. It is a white to light yellow, odorless, bitter compound with a molecular weight of 290.3. It has the following structural formula:

Inactive ingredients: Docusate sodium 85%, sodium benzoate 15%, sodium starch glycolate, magnesium stearate and pregelatinized starch.

Sulfamethoxazole and Trimethoprim - Clinical Pharmacology

Sulfamethoxazole and Trimethoprim is rapidly absorbed following oral administration. Both Sulfamethoxazole and Trimethoprim exist in the blood as unbound, protein-bound and metabolized forms; sulfamethoxazole also exists as the conjugated form. The metabolism of sulfamethoxazole occurs predominately by N4-acetylation, although the glucuronide conjugate has been identified. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3"- and 4"- hydroxy derivatives. The free forms of Sulfamethoxazole and Trimethoprim are considered to be the therapeutically active forms. Approximately 70% of sulfamethoxazole and 44% of trimethoprim are bound to plasma proteins. The presence of 10 mg percent sulfamethoxazole in plasma decreases the protein binding of trimethoprim by an insignificant degree; trimethoprim does not influence the protein binding of sulfamethoxazole.

Peak blood levels for the individual components occur 1 to 4 hours after oral administration.

The mean serum half-lives of Sulfamethoxazole and Trimethoprim are 10 and 8 to 10 hours, respectively. However, patients with severely impaired renal function exhibit an increase in the half-lives of both components, requiring dosage regimen adjustment (see DOSAGE AND ADMINISTRATION section). Detectable amounts of Sulfamethoxazole and Trimethoprim are present in the blood 24 hours after drug administration. During administration of 800 mg sulfamethoxazole and 160 mg trimethoprim b.i.d., the mean steady-state plasma concentration of trimethoprim was 1.72 µg/mL. The steady-state mean plasma levels of free and total sulfamethoxazole were 57.4 µg/mL and 68.0 µg/mL, respectively. These steady-state levels were achieved after three days of drug administration.1

Excretion of Sulfamethoxazole and Trimethoprim is primarily by the kidneys through both glomerular filtration and tubular secretion. Urine concentrations of both Sulfamethoxazole and Trimethoprim are considerably higher than are the concentrations in the blood. The average percentage of the dose recovered in urine from 0 to 72 hours after a single oral dose of Sulfamethoxazole and Trimethoprim is 84.5% for total sulfonamide and 66.8% for free trimethoprim. Thirty percent of the total sulfonamide is excreted as free sulfamethoxazole, with the remaining as N4-acetylated metabolite.2 When administered together as Sulfamethoxazole and Trimethoprim, neither sulfamethoxazole nor trimethoprim affects the urinary excretion pattern of the other.

Both Sulfamethoxazole and Trimethoprim distribute to sputum, vaginal fluid and middle ear fluid; trimethoprim also distributes to bronchial secretion, and both pass the placental barrier and are excreted in human milk.

Geriatric Pharmacokinetics

The pharmacokinetics of sulfamethoxazole 800 mg and trimethoprim 160 mg were studied in 6 geriatric subjects (mean age: 78.6 years) and 6 young healthy subjects (mean mean age: 29.3 years) using a non-US approved formulation. Pharmacokinetic values for sulfamethoxazole in geriatric subjects were similar to those observed in young adult subjects. The mean renal clearance of trimethoprim was significantly lower in geriatric subjects compared with young adult subjects (19 mL/h/kg vs. 55 mL/h/kg). However, after normalizing by body weight, the apparent total body clearance of trimethoprim was on average 19% lower in geriatric subjects compared with young adult subjects.3

Microbiology

Sulfamethoxazole inhibits bacterial synthesis of dihydrofolic acid by competing with paraaminobenzoic acid (PABA). Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. Thus, Sulfamethoxazole and Trimethoprim blocks two consecutive steps in the biosynthesis of nucleic acids and proteins essential to many bacteria.

In vitro studies have shown that bacterial resistance develops more slowly with both Sulfamethoxazole and Trimethoprim in combination than with either sulfamethoxazole or trimethoprim alone.

Sulfamethoxazole and Trimethoprim have been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.

Aerobic gram-positive microorganisms:

Streptococcus pneumoniae

Aerobic gram-negative microorganisms:

Escherichia coli (including susceptible enterotoxigenic strains implicated in traveler"s diarrhea)
Klebsiella species
Enterobacter species
Haemophilus influenzae
Morganella morganii
Proteus mirabilis
Proteus vulgaris
Shigella flexneri
Shigella sonnei

Other Organisms:

Pneumocystis carinii

Susceptibility Testing Methods

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method5 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of sulfamethoxazole/trimethoprim powder. The MIC values should be interpreted according to the following criteria:

For testing Enterobacteriaceae:
MIC (µg/mL) Interpretation
≤ 2/38 Susceptible (S)
≥ 4/76 Resistant (R)
When testing either Haemophilus influenzae* or Streptococcus pneumoniae:
MIC (µg/mL) Interpretation
*
These interpretative standards are applicable only to broth microdilution susceptibility tests with Haemophilus influenzae using Haemophilus Test Medium (HTM)5.
These interpretative standards are applicable only to broth microdilution susceptibility tests using cation-adjusted Mueller-Hinton broth with 2% to 5% lysed horse blood5.
≤ 0.5/9.5 Susceptible (S)
1/19-2/38 Intermediate (I)
≥ 4/76 Resistant (R)

A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of "Intermediate" indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard sulfamethoxazole/trimethoprim powder should provide the following range of values:

Microorganism MIC (µg/mL)
*
This quality control range is applicable only to Haemophilus influenzae ATCC 49247 tested by broth microdilution procedure using Haemophilus Test Medium (HTM)5.
This quality control range is applicable to tests performed by the broth microdilution method only using cation-adjusted Mueller-Hinton broth with 2% to 5% lysed horse blood5.
Escherichia coli ATCC    25922 ≤ 0.5/9.5
Haemophilus influenzae* ATCC    49247 0.03/0.59 – 0.25/4.75
Streptococcus pneumoniae ATCC    49619 0.12/2.4 – 1/19

Diffusion Techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure6 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 1.25/23.75 µg of sulfamethoxazole/trimethoprim to test the susceptibility of microorganisms to sulfamethoxazole/trimethoprim.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 1.25/23.75 µg of sulfamethoxazole/trimethoprim disk should be interpreted according to the following criteria:.

For testing either Enterobacteriaceae or Haemophilus influenzae*:
Zone Diameter (mm) Interpretation
*
These zone diameter standards are applicable only for disk diffusion testing with Haemophilus influenzae and Haemophilus Test Medium (HTM)6.
≥ 16 Susceptible (S)
11 – 15 Intermediate (I)
≤ 10 Resistant (R)
When testing Streptococcus pneumoniae*:
Zone Diameter (mm) Interpretation
*
These zone diameter interpretative standards are applicable only to tests performed using Mueller-Hinton agar supplemented with 5% defibrinated sheep blood when incubated in 5% CO26.
≥ 19 Susceptible (S)
16 – 18 Intermediate (I)
≤ 15 Resistant (R)

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for sulfamethoxazole/trimethoprim.

Quality Control

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 1.25/23.75 µg sulfamethoxazole/trimethoprim disk1 should provide the following zone diameters in these laboratory test quality control strains:

Microorganism Zone Diameter Ranges (mm)
*
This quality control range is applicable only to Haemophilus influenzae ATCC 49247 tested by a disk diffusion procedure using Haemophilus Test Medium (HTM)6.
This quality control range is applicable only to tests performed by disk diffusion using Mueller-Hinton agar supplemented with 5% defibrinated sheep blood when incubated in 5% CO26.
Escherichia coli ATCC    25922 24 – 32
Haemophilus influenzae* ATCC    49247 24 – 32
Streptococcus pneumoniae ATCC    49619 20 – 28
1
Mueller-Hinton agar should be checked for excessive levels of thymidine or thymine. To determine whether Mueller-Hinton medium has sufficiently low levels of thymidine and thymine, an Enterococcus faecalis (ATCC 29212 or ATCC 33186) may be tested with sulfamethoxazole/trimethoprim disks. A zone of inhibition ≥20 mm that is essentially free of fine colonies indicates a sufficiently low level of thymidine and thymine.

Indications and Usage for Sulfamethoxazole and Trimethoprim

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Sulfamethoxazole and Trimethoprim tablets and other antibacterial drugs, Sulfamethoxazole and Trimethoprim should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to empiric selection of therapy.

Urinary Tract Infections

For the treatment of urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Klebsiella species, Enterobacter species, Morganella morganii, Proteus mirabilis and Proteus vulgaris. It is recommended that initial episodes of uncomplicated urinary tract infections be treated with a single effective antibacterial agent rather than the combination.

Acute Otitis Media

For the treatment of acute otitis media in pediatric patients due to susceptible strains of Streptococcus pneumoniae or Haemophilus influenzae when in the judgment of the physician Sulfamethoxazole and Trimethoprim offers some advantage over the use of other antimicrobial agents. To date, there are limited data on the safety of repeated use of Sulfamethoxazole and Trimethoprim in pediatric patients under two years of age. Sulfamethoxazole and Trimethoprim is not indicated for prophylactic or prolonged administration in otitis media at any age.

Acute Exacerbations of Chronic Bronchitis in Adults

For the treatment of acute exacerbations of chronic bronchitis due to susceptible strains of Streptococcus pneumoniae or Haemophilus influenzae when in the judgment of the physician Sulfamethoxazole and Trimethoprim offers some advantage over the use of a single antimicrobial agent.

Shigellosis

For the treatment of enteritis caused by susceptible strains of Shigella flexneri and Shigella sonnei when antibacterial therapy is indicated.

Pneumocystis Carinii Pneumonia

For the treatment of documented Pneumocystis carinii pneumonia and for prophylaxis against Pneumocystis carinii pneumonia in individuals who are immunosuppressed and considered to be at an increased risk of developing Pneumocystis carinii pneumonia.

Traveler"s Diarrhea in Adults

For the treatment of traveler"s diarrhea due to susceptible strains of enterotoxigenic E. coli.

Contraindications

Sulfamethoxazole and Trimethoprim is contraindicated in patients with a known hypersensitivity to trimethoprim or sulfonamides and in patients with documented megaloblastic anemia due to folate deficiency. Sulfamethoxazole and Trimethoprim is also contraindicated in pregnant patients and nursing mothers, because sulfonamides pass the placenta and are excreted in the milk and may cause kernicterus. Sulfamethoxazole and Trimethoprim is contraindicated in pediatric patients less than 2 months of age. Sulfamethoxazole and Trimethoprim is also contraindicated in patients with marked hepatic damage or with severe renal insufficiency when renal function status cannot be monitored.

Warnings

FATALITIES ASSOCIATED WITH THE ADMINISTRATION OF SULFONAMIDES, ALTHOUGH RARE, HAVE OCCURRED DUE TO SEVERE REACTIONS, INCLUDING STEVENS-JOHNSON SYNDROME, TOXIC EPIDERMAL NECROLYSIS, FULMINANT HEPATIC NECROSIS, AGRANULOCYTOSIS, APLASTIC ANEMIA AND OTHER BLOOD DYSCRASIAS.

SULFONAMIDES, INCLUDING SULFONAMIDE-CONTAINING PRODUCTS SUCH AS SULFAMETHOXAZOLE/TRIMETHOPRIM, SHOULD BE DISCONTINUED AT THE FIRST APPEARANCE OF SKIN RASH OR ANY SIGN OF ADVERSE REACTION. In rare instances, a skin rash may be followed by a more severe reaction, such as Stevens-Johnson syndrome, toxic epidermal necrolysis, hepatic necrosis, and serious blood disorders (see PRECAUTIONS).

Clinical signs such as rash, sore throat, fever, arthralgia, pallor, purpura or jaundice may be early indications of serious reactions.

Cough, shortness of breath, and pulmonary infiltrates are hypersensitivity reactions of the respiratory tract that have been reported in association with sulfonamide treatment.

The sulfonamides should not be used for the treatment of group A β-hemolytic streptococcal infections. In an established infection, they will not eradicate the streptococcus and, therefore, will not prevent sequelae such as rheumatic fever.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including sulfamethoxazole/ trimethoprim, and may range in severity from mild to life-threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhea subsequent to the administration of antibacterial agents.

Treatment with antibacterial agents alters the normal flora of the colon and may permit overgrowth of clostridia. Studies indicate that a toxin produced by Clostridium difficile is one primary cause of "antibiotic-associated colitis".

After the diagnosis of pseudomembranous colitis has been established, therapeutic measures should be initiated. Mild cases of pseudomembranous colitis usually respond to drug discontinuation alone. In moderate to severe cases, consideration should be given to management with fluids and electrolytes, protein supplementation and treatment with an antibacterial drug effective against C. difficile.

Precautions

General

Prescribing Sulfamethoxazole and Trimethoprim tablets in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Sulfamethoxazole and Trimethoprim should be given with caution to patients with impaired renal or hepatic function, to those with possible folate deficiency (e.g., the elderly, chronic alcoholics, patients receiving anticonvulsant therapy, patients with malabsorption syndrome and patients in malnutrition states) and to those with severe allergies or bronchial asthma. In glucose-6-phosphate dehydrogenase deficient individuals, hemolysis may occur. This reaction is frequently dose-related (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).

Cases of hypoglycemia in non-diabetic patients treated with Sulfamethoxazole and Trimethoprim are seen rarely, usually occurring after a few days of therapy. Patients with renal dysfunction, liver disease, malnutrition or those receiving high doses of Sulfamethoxazole and Trimethoprim are particularly at risk.

Hematological changes indicative of folic acid deficiency may occur in elderly patients or in patients with preexisting folic acid deficiency or kidney failure. These effects are reversible by folinic acid therapy.

Trimethoprim has been noted to impair phenylalanine metabolism, but this is of no significance in phenylketonuric patients on appropriate dietary restriction.

As with all drugs containing sulfonamides, caution is advisable in patients with porphyria or thyroid dysfunction.

Use in the Treatment of and Prophylaxis for Pneumocystis Carinii Pneumonia in Patients with Acquired Immunodeficiency Syndrome (AIDS)

AIDS patients may not tolerate or respond to Sulfamethoxazole and Trimethoprim in the same manner as non-AIDS patients. The incidence of side effects, particularly rash, fever, leukopenia and elevated aminotransferase (transaminase) values, with Sulfamethoxazole and Trimethoprim therapy in AIDS patients who are being treated for Pneumocystis carinii pneumonia has been reported to be greatly increased compared with the incidence normally associated with the use of Sulfamethoxazole and Trimethoprim in non-AIDS patients. The incidence of hyperkalemia appears to be increased in AIDS patients receiving Sulfamethoxazole and Trimethoprim. Adverse effects are generally less severe in patients receiving Sulfamethoxazole and Trimethoprim for prophylaxis. A history of mild intolerance to Sulfamethoxazole and Trimethoprim in AIDS patients does not appear to predict intolerance of subsequent secondary prophylaxis.7 However, if a patient develops skin rash or any sign of adverse reaction, therapy with Sulfamethoxazole and Trimethoprim should be reevaluated (see WARNINGS).

High dosage of trimethoprim, as used in patients with Pneumocystis carinii pneumonia, induces a progressive but reversible increase of serum potassium concentrations in a substantial number of patients. Even treatment with recommended doses may cause hyperkalemia when trimethoprim is administered to patients with underlying disorders of potassium metabolism, with renal insufficiency, or if drugs known to induce hyperkalemia are given concomitantly. Close monitoring of serum potassium is warranted in these patients.

During treatment, adequate fluid intake and urinary output should be ensured to prevent crystalluria. Patients who are "slow acetylators" may be more prone to idiosyncratic reactions to sulfonamides.

Information for Patients

Patients should be counseled that antibacterial drugs, including Sulfamethoxazole and Trimethoprim tablets should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Sulfamethoxazole and Trimethoprim tablets are prescribed to treat bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Sulfamethoxazole and Trimethoprim tablets or other antibacterial drugs in the future.

Patients should be instructed to maintain an adequate fluid intake in order to prevent crystalluria and stone formation.

Laboratory Tests

Complete blood counts should be done frequently in patients receiving Sulfamethoxazole and Trimethoprim; if a significant reduction in the count of any formed blood element is noted, Sulfamethoxazole and Trimethoprim should be discontinued. Urinalyses with careful microscopic examination and renal function tests should be performed during therapy, particularly for those patients with impaired renal function.

Drug Interactions

In elderly patients concurrently receiving certain diuretics, primarily thiazides, an increased incidence of thrombocytopenia with purpura has been reported.

It has been reported that Sulfamethoxazole and Trimethoprim may prolong the prothrombin time in patients who are receiving the anticoagulant warfarin. This interaction should be kept in mind when Sulfamethoxazole and Trimethoprim is given to patients already on anticoagulant therapy, and the coagulation time should be reassessed.

Sulfamethoxazole and Trimethoprim may inhibit the hepatic metabolism of phenytoin. Sulfamethoxazole and Trimethoprim, given at a common clinical dosage, increased the phenytoin half-life by 39% and decreased the phenytoin metabolic clearance rate by 27%. When administering these drugs concurrently, one should be alert for possible excessive phenytoin effect.

Sulfonamides can also displace methotrexate from plasma protein binding sites and can compete with the renal transport of methotrexate, thus increasing free methotrexate concentrations.

There have been reports of marked but reversible nephrotoxicity with coadministration of Sulfamethoxazole and Trimethoprim and cyclosporine in renal transplant recipients.

Increased digoxin blood levels can occur with concomitant Sulfamethoxazole and Trimethoprim therapy, especially in elderly patients. Serum digoxin levels should be monitored.

Increased sulfamethoxazole blood levels may occur in patients who are also receiving indomethacin.

Occasional reports suggest that patients receiving pyrimethamine as malaria prophylaxis in doses exceeding 25 mg weekly may develop megaloblastic anemia if Sulfamethoxazole and Trimethoprim is prescribed.

The efficacy of tricyclic antidepressants can decrease when coadministered with Sulfamethoxazole and Trimethoprim.

Like other sulfonamide-containing drugs, Sulfamethoxazole and Trimethoprim potentiates the effect of oral hypoglycemics.

In the literature, a single case of toxic delirium has been reported after concomitant intake of sulfamethoxazole/trimethoprim and amantadine.

In the literature, three cases of Hyperkalemia in elderly patients have been reported after concomitant intake of trimethoprim/sulfamethoxazole and angiotensin converting enzyme inhibitor.8,9

Drug/Laboratory Test Interactions

Sulfamethoxazole and Trimethoprim, specifically the trimethoprim component, can interfere with a serum methotrexate assay as determined by the competitive binding protein technique (CBPA) when a bacterial dihydrofolate reductase is used as the binding protein. No interference occurs, however, if methotrexate is measured by a radioimmunoassay (RIA).

The presence of Sulfamethoxazole and Trimethoprim may also interfere with the Jaffé alkaline picrate reaction assay for creatinine, resulting in overestimations of about 10% in the range of normal values.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Long-term studies in animals to evaluate carcinogenic potential have not been conducted with Sulfamethoxazole and Trimethoprim.

Mutagenesis

Bacterial mutagenic studies have not been performed with Sulfamethoxazole and Trimethoprim in combination. Trimethoprim was demonstrated to be nonmutagenic in the Ames assay. No chromosomal damage was observed in human leukocytes cultured in vitro with Sulfamethoxazole and Trimethoprim alone or in combination; the concentrations used exceeded blood levels of these compounds following therapy with Sulfamethoxazole and Trimethoprim. Observations of leukocytes obtained from patients treated with Sulfamethoxazole and Trimethoprim revealed no chromosomal abnormalities.

Impairment of Fertility

No adverse effects on fertility or general reproductive performance were observed in rats given oral dosages as high as 350 mg/kg/day sulfamethoxazole plus 70 mg/kg/day trimethoprim. These doses are 10.9-fold higher than the recommended human dose for Sulfamethoxazole and Trimethoprim.

Pregnancy

Teratogenic Effects

Pregnancy Category C

In rats, oral doses of 533 mg/kg sulfamethoxazole (16.7-fold higher than the recommended human dose) or 200 mg/kg trimethoprim (31.3-fold higher than the recommended human dose) produced teratologic effects manifested mainly as cleft palates.

The highest dose which did not cause cleft palates in rats was 512 mg/kg sulfamethoxazole (16-fold higher than the recommended human dose) or 192 mg/kg trimethoprim (30-fold higher than the recommended human dose) when administered separately. In two studies in rats, no teratology was observed when 512 mg/kg of sulfamethoxazole (16-fold higher than the recommended human dose) was used in combination with 128 mg/kg of trimethoprim (20-fold higher than the recommended human dose). In one study, however, cleft palates were observed in one litter out of 9 when 355 mg/kg of sulfamethoxazole (11.1-fold higher than the recommended human dose) was used in combination with 88 mg/kg of trimethoprim (13.8-fold higher than the recommended human dose).

In some rabbit studies, an overall increase in fetal loss (dead and resorbed and malformed conceptuses) was associated with doses of trimethoprim 6 times the human therapeutic dose.

While there are no large, well-controlled studies on the use of Sulfamethoxazole and Trimethoprim in pregnant women, Brumfitt and Pursell,10 in a retrospective study, reported the outcome of 186 pregnancies during which the mother received either placebo or Sulfamethoxazole and Trimethoprim. The incidence of congenital abnormalities was 4.5% (3 of 66) in those who received placebo and 3.3% (4 of 120) in those receiving Sulfamethoxazole and Trimethoprim. There were no abnormalities in the 10 children whose mothers received the drug during the first trimester. In a separate survey, Brumfitt and Pursell also found no congenital abnormalities in 35 children whose mothers had received oral Sulfamethoxazole and Trimethoprim at the time of conception or shortly thereafter.

Because Sulfamethoxazole and Trimethoprim may interfere with folic acid metabolism, Sulfamethoxazole and Trimethoprim should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nonteratogenic Effects

See CONTRAINDICATIONS section.

Nursing Mothers

See CONTRAINDICATIONS section.

Pediatric Use

Sulfamethoxazole and Trimethoprim is not recommended for pediatric patients younger than 2 months of age (see INDICATIONS and CONTRAINDICATIONS sections).

Geriatric Use

Clinical studies of Sulfamethoxazole and Trimethoprim did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects.

There may be an increased risk of severe adverse reactions in elderly patients, particularly when complicating conditions exist, e.g., impaired kidney and/or liver function, possible folate deficiency, or concomitant use of other drugs. Severe skin reactions, generalized bone marrow suppression (see WARNINGS and ADVERSE REACTIONS sections), a specific decrease in platelets (with or without purpura), and hyperkalemia are the most frequently reported severe adverse reactions in elderly patients. In those concurrently receiving certain diuretics, primarily thiazides, an increased incidence of thrombocytopenia with purpura has been reported. Increased digoxin blood levels can occur with concomitant Sulfamethoxazole and Trimethoprim therapy, especially in elderly patients. Serum digoxin levels should be monitored. Hematological changes indicative of folic acid deficiency may occur in elderly patients. These effects are reversible by folinic acid therapy. Appropriate dosage adjustments should be made for patients with impaired kidney function and duration of use should be as short as possible to minimize risks of undesired reactions (see DOSAGE AND ADMINISTRATION section). The trimethoprim component of Sulfamethoxazole and Trimethoprim may cause hyperkalemia when administered to patients with underlying disorders of potassium metabolism, with renal insufficiency or when given concomitantly with drugs known to induce hyperkalemia, such as angiotensin converting enzyme inhibitors. Close monitoring of serum potassium is warranted in these patients. Discontinuation of Sulfamethoxazole and Trimethoprim treatment is recommended to help lower potassium serum levels. Sulfamethoxazole and Trimethoprim tablets contain 1.8 mg sodium (0.08 mEq) of sodium per tablet. Sulfamethoxazole and Trimethoprim DS tablets contain 3.6 mg (0.16 mEq) of sodium per tablet.

Pharmacokinetics parameters for sulfamethoxazole were similar for geriatric subjects and younger adult subjects. The mean maximum serum trimethoprim concentration was higher and mean renal clearance of trimethoprim was lower in geriatric subjects compared with younger subjects (see CLINICAL PHARMACOLOGY: Geriatric Pharmacokinetics).

Adverse Reactions

The most common adverse effects are gastrointestinal disturbances (nausea, vomiting, anorexia) and allergic skin reactions (such as rash and urticaria). FATALITIES ASSOCIATED WITH THE ADMINISTRATION OF SULFONAMIDES, ALTHOUGH RARE, HAVE OCCURRED DUE TO SEVERE REACTIONS, INCLUDING STEVENS-JOHNSON SYNDROME, TOXIC EPIDERMAL NECROLYSIS, FULMINANT HEPATIC NECROSIS, AGRANULOCYTOSIS, APLASTIC ANEMIA AND OTHER BLOOD DYSCRASIAS (SEE WARNINGS SECTION).

Hematologic: Agranulocytosis, aplastic anemia, thrombocytopenia, leukopenia, neutropenia, hemolytic anemia, megaloblastic anemia, hypoprothrombinemia, methemoglobinemia, eosinophilia.

Allergic Reactions: Stevens-Johnson syndrome, toxic epidermal necrolysis, anaphylaxis, allergic myocarditis, erythema multiforme, exfoliative dermatitis, angioedema, drug fever, chills, Henoch-Schoenlein purpura, serum sickness-like syndrome, generalized allergic reactions, generalized skin eruptions, photosensitivity, conjunctival and scleral injection, pruritus, urticaria and rash. In addition, periarteritis nodosa and systemic lupus erythematosus have been reported.

Gastrointestinal: Hepatitis (including cholestatic jaundice and hepatic necrosis), elevation of serum transaminase and bilirubin, pseudomembranous enterocolitis, pancreatitis, stomatitis, glossitis, nausea, emesis, abdominal pain, diarrhea, anorexia.

Genitourinary: Renal failure, interstitial nephritis, BUN and serum creatinine elevation, toxic nephrosis with oliguria and anuria, crystalluria and nephrotoxicity in association with cyclosporine.

Metabolic and Nutritional: Hyperkalemia (see PRECAUTIONS: Use in the Treatment of and Prophylaxis for Pneumocystis Carinii Pneumonia in Patients with Acquired Immunodeficiency Syndrome (AIDS).

Neurologic: Aseptic meningitis, convulsions, peripheral neuritis, ataxia, vertigo, tinnitus, headache.

Psychiatric: Hallucinations, depression, apathy, nervousness.

Endocrine: The sulfonamides bear certain chemical similarities to some goitrogens, diuretics (acetazolamide and the thiazides) and oral hypoglycemic agents. Cross-sensitivity may exist with these agents. Diuresis and hypoglycemia have occurred rarely in patients receiving sulfonamides.

Musculoskeletal: Arthralgia and myalgia. Isolated cases of rhabdomyolysis have been reported with Sulfamethoxazole and Trimethoprim, mainly in AIDS patients.

Respiratory: Cough, shortness of breath, pulmonary infiltrates (see WARNINGS).

Miscellaneous: Weakness, fatigue, insomnia.

Overdosage

Acute

The amount of a single dose of Sulfamethoxazole and Trimethoprim that is either associated with symptoms of overdosage or is likely to be life-threatening has not been reported. Signs and symptoms of overdosage reported with sulfonamides include anorexia, colic, nausea, vomiting, dizziness, headache, drowsiness and unconsciousness. Pyrexia, hematuria and crystalluria may be noted. Blood dyscrasias and jaundice are potential late manifestations of overdosage.

Signs of acute overdosage with trimethoprim include nausea, vomiting, dizziness, headache, mental depression, confusion and bone marrow depression.

General principles of treatment include the institution of gastric lavage or emesis, forcing oral fluids, and the administration of intravenous fluids if urine output is low and renal function is normal. Acidification of the urine will increase renal elimination of trimethoprim. The patient should be monitored with blood counts and appropriate blood chemistries, including electrolytes. If a significant blood dyscrasia or jaundice occurs, specific therapy should be instituted for these complications. Peritoneal dialysis is not effective and hemodialysis is only moderately effective in eliminating Sulfamethoxazole and Trimethoprim.

Chronic

Use of Sulfamethoxazole and Trimethoprim at high doses and/or for extended periods of time may cause bone marrow depression manifested as thrombocytopenia, leukopenia and/or megaloblastic anemia. If signs of bone marrow depression occur, the patient should be given leucovorin 5 to 15 mg daily until normal hematopoiesis is restored.

Sulfamethoxazole and Trimethoprim Dosage and Administration

Not recommended for use in pediatric patients less than 2 months of age.

Urinary Tract Infections and Shigellosis in Adults and Pediatric Patients, and Acute Otitis Media in Pediatric Patients

Adults

The usual adult dosage in the treatment of urinary tract infections is 1 Sulfamethoxazole and Trimethoprim DS (double strength) tablet or 2 Sulfamethoxazole and Trimethoprim tablets every 12 hours for 10 to 14 days. An identical daily dosage is used for 5 days in the treatment of shigellosis.

Pediatric Patients

The recommended dose for pediatric patients with urinary tract infections or acute otitis media is 40 mg/kg sulfamethoxazole and 8 mg/kg trimethoprim per 24 hours, given in two divided doses every 12 hours for 10 days. An identical daily dosage is used for 5 days in the treatment of shigellosis. The following table is a guideline for the attainment of this dosage:

Pediatric Patients 2 months of age or older:
Weight Dose – every 12 hours
lb kg Tablets
22 10 -
44 20 1
66 30 1 1/2
88 40 2 or 1 DS tablet

For Patients with Impaired Renal Function

When renal function is impaired, a reduced dosage should be employed using the following table:

Creatinine Clearance (mL/min) Recommended Dosage Regimen
Above 30 Usual standard regimen
15-30 1/2 the usual regimen
Below 15 Use not recommended

Acute Exacerbations of Chronic Bronchitis in Adults

The usual adult dosage in the treatment of acute exacerbations of chronic bronchitis is 1 Sulfamethoxazole and Trimethoprim DS (double strength) tablets or 2 sulfamethoxazole and trimethoprim tablets every 12 hours for 14 days.

Pneumocystis Carinii Pneumonia

Treatment

Adults and Pediatric Patients

The recommended dosage for treatment of patients with documented Pneumocystis carinii pneumonia is 75 to 100 mg/kg sulfamethoxazole and 15 to 20 mg/kg trimethoprim per 24 hours given in equally divided doses every 6 hours for 14 to 21 days.11 The following table is a guideline for the upper limit of this dosage.

Weight Dose – every 6 hours
lb kg Tablets
18 8 -
35 16 1
53 24 1 1/2
70 32 2 or 1 DS tablet
88 40 2 1/2
106 48 3 or 1 1/2 DS tablets
141 64 4 or 2 DS tablets
176 80 5 or 2 1 /2 DS Tablets

For the lower limit dose (75 mg/kg sulfamethoxazole and 15 mg/kg trimethoprim per 24 hours) administer 75% of the dose in the above table.

Prophylaxis

Adults

The recommended dosage for prophylaxis in adults is 1 Sulfamethoxazole and Trimethoprim DS (double strength) tablet daily.12

Pediatric Patients

For pediatric patients, the recommended dose is 750 mg/m2/day sulfamethoxazole with 150 mg/m2/day trimethoprim given orally in equally divided doses twice a day, on 3 consecutive days per week. The total daily dose should not exceed 1600 mg sulfamethoxazole and 320 mg trimethoprim.12 The following table is a guideline for the attainment of this dosage in pediatric patients:

Body Surface Area Dose – every 12 hours
(m2) Tablets
0.26 -
0.53 1/2
1.06 1

Traveler"s Diarrhea in Adults

For the treatment of traveler"s diarrhea, the usual adult dosage is 1 Sulfamethoxazole and Trimethoprim DS (double strength) tablets or 2 Sulfamethoxazole and Trimethoprim tablets every 12 hours for 5 days.

How is Sulfamethoxazole and Trimethoprim Supplied

Sulfamethoxazole and Trimethoprim TABLETS, USP are supplied as follows: Sulfamethoxazole 400 mg and trimethoprim 80 mg tablets, white, round, scored, debossed MP 81

Bottles of 100                            NDC 53489-145-01
Bottles of 500                            NDC 53489-145-05

Sulfamethoxazole 800 mg and trimethoprim 160 mg tablets, double strength, white, oval shaped, scored, debossed MP 85

Bottles of 100                            NDC 53489-146-01
Bottles of 500                            NDC 53489-146-05

Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]

DISPENSE IN TIGHT, LIGHT-RESISTANT CONTAINER.

REFERENCES

  1. Kremers P, Duvivier J, Heusghem C. Pharmacokinetic Studies of Co-Trimoxazole in Man after Single and Repeated Doses. J Clin Pharmacol. Feb-Mar 1974; 14:112-117.
  2. Kaplan SA, et al. Pharmacokinetic Profile of Trimethoprim-Sulfamethoxazole in Man. J Infect Dis. Nov 1973; 128 (Suppl): S547-S555.
  3. Varoquaux O, et al Pharmacokinetics of the trimethoprim-sulfamethoxazole combination in the elderly. Br J Clin Pharmacol 1985;20;575-581
  4. Rudoy RC, Nelson JD, Haltalin KC. Antimicrobial Agents Chemother. May 1974;5:439-443.
  5. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard – Fourth Edition. NCCLS document M7-A4, Vol.17 No. 2 NCCLS, Wayne, PA, January, 1997.
  6. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard – Sixth Edition. NCCLS Document M2-A6, Vol.17, No.1, NCCLS, Wayne, PA, January, 1997.
  7. Hardy DW, et al. A controlled trial of trimethoprim-sulfamethoxazole or aerosolized pentamidine for secondary prophylaxis of Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1992; 327: 1842-1848.
  8. Marinella Mark A. 1999. Trimethoprim-induced hyperkalemia: An analysis of reported cases. Gerontol. 45:209-212.
  9. Margassery, S. and B. Bastani. 2002. Life threatening hyperkalemia and acidosis secondary to trimethoprim-sulfamethoxazole treatment. J. Nephrol. 14:410-414.
  10. Brumfitt W, Pursell R. Trimethoprim/Sulfamethoxazole in the Treatment of Bacteriuria in Women. J Infect Dis. Nov 1973; 128 (Suppl):S657-S663.
  11. Masur H. Prevention and treatment of Pneumocystis pneumonia. N Engl J Med. 1992; 327: 1853-1880.
  12. Recommendations for prophylaxis against Pneumocystis carinii pneumonia for adults and adolescents infected with human immunodefficiency virus. MMWR. 1992; 41(RR-4):1-11.
  13. CDC Guidelines for prophylaxis against Pneumocystis carinii pneumonia for children infected with human immunodeficiency virus. MMWR. 1991; 40(RR-2):1-13

Manufactured By:
MUTUAL PHARMACEUTICAL COMPANY, INC.
Philadelphia, PA 19124 USA

Rev: December 2004Ch


Sulfamethoxazole and Trimethoprim (Sulfamethoxazole and Trimethoprim)
PRODUCT INFO
Product Code 53489-145 Dosage Form TABLET
Route Of Administration ORAL DEA Schedule
INGREDIENTS
Name (Active Moiety) Type Strength
Trimethoprim (Trimethoprim) Active 400 MILLIGRAM  In 1 TABLET
Sulfamethoxazole (Sulfamethoxazole ) Active 80 MILLIGRAM  In 1 TABLET
Docusate sodium Inactive  
sodium benzoate Inactive  
sodium starch glycolate Inactive  
magnesium stearate Inactive  
pregelatinized starch Inactive  
IMPRINT INFORMATION
Characteristic Appearance Characteristic Appearance
Color WHITE Score 2
Shape ROUND Symbol false
Imprint Code MP;81 Coating false
Size 11mm
PACKAGING
# NDC Package Description Multilevel Packaging
1 53489-145-01 100 TABLET In 1 BOTTLE, PLASTIC None
2 53489-145-05 500 TABLET In 1 BOTTLE, PLASTIC None

Sulfamethoxazole and Trimethoprim (Sulfamethoxazole and Trimethoprim)
PRODUCT INFO
Product Code 53489-146 Dosage Form TABLET
Route Of Administration ORAL DEA Schedule
INGREDIENTS
Name (Active Moiety) Type Strength
Trimethoprim (Trimethoprim) Active 800 MILLIGRAM  In 1 TABLET
Sulfamethoxazole (Sulfamethoxazole ) Active 160 MILLIGRAM  In 1 TABLET
Docusate sodium Inactive  
sodium benzoate Inactive  
sodium starch glycolate Inactive  
magnesium stearate Inactive  
pregelatinized starch Inactive  
IMPRINT INFORMATION
Characteristic Appearance Characteristic Appearance
Color WHITE Score 2
Shape OVAL Symbol false
Imprint Code MP;85 Coating false
Size 19mm
PACKAGING
# NDC Package Description Multilevel Packaging
1 53489-146-01 100 TABLET In 1 BOTTLE, PLASTIC None
2 53489-146-05 500 TABLET In 1 BOTTLE, PLASTIC None

Revised: 01/2007





Where can I get more information about Sulfamethoxazole and Trimethoprim Tablets ? We recommend to use www.Drugs.com

Typical mistypes for Sulfamethoxazole and Trimethoprim Tablets
aulfamethoxazole and trimethoprim tablets, zulfamethoxazole and trimethoprim tablets, xulfamethoxazole and trimethoprim tablets, dulfamethoxazole and trimethoprim tablets, eulfamethoxazole and trimethoprim tablets, wulfamethoxazole and trimethoprim tablets, sylfamethoxazole and trimethoprim tablets, shlfamethoxazole and trimethoprim tablets, sjlfamethoxazole and trimethoprim tablets, silfamethoxazole and trimethoprim tablets, s8lfamethoxazole and trimethoprim tablets, s7lfamethoxazole and trimethoprim tablets, sukfamethoxazole and trimethoprim tablets, supfamethoxazole and trimethoprim tablets, suofamethoxazole and trimethoprim tablets, suldamethoxazole and trimethoprim tablets, sulcamethoxazole and trimethoprim tablets, sulvamethoxazole and trimethoprim tablets, sulgamethoxazole and trimethoprim tablets, sultamethoxazole and trimethoprim tablets, sulramethoxazole and trimethoprim tablets, sulfzmethoxazole and trimethoprim tablets, sulfsmethoxazole and trimethoprim tablets, sulfwmethoxazole and trimethoprim tablets, sulfqmethoxazole and trimethoprim tablets, sulfanethoxazole and trimethoprim tablets, sulfakethoxazole and trimethoprim tablets, sulfajethoxazole and trimethoprim tablets, sulfamwthoxazole and trimethoprim tablets, sulfamsthoxazole and trimethoprim tablets, sulfamdthoxazole and trimethoprim tablets, sulfamrthoxazole and trimethoprim tablets, sulfam4thoxazole and trimethoprim tablets, sulfam3thoxazole and trimethoprim tablets, sulfamerhoxazole and trimethoprim tablets, sulfamefhoxazole and trimethoprim tablets, sulfameghoxazole and trimethoprim tablets, sulfameyhoxazole and trimethoprim tablets, sulfame6hoxazole and trimethoprim tablets, sulfame5hoxazole and trimethoprim tablets, sulfametgoxazole and trimethoprim tablets, sulfametboxazole and trimethoprim tablets, sulfametnoxazole and trimethoprim tablets, sulfametjoxazole and trimethoprim tablets, sulfametuoxazole and trimethoprim tablets, sulfametyoxazole and trimethoprim tablets, sulfamethixazole and trimethoprim tablets, sulfamethkxazole and trimethoprim tablets, sulfamethlxazole and trimethoprim tablets, sulfamethpxazole and trimethoprim tablets, sulfameth0xazole and trimethoprim tablets, sulfameth9xazole and trimethoprim tablets, sulfamethozazole and trimethoprim tablets, sulfamethocazole and trimethoprim tablets, sulfamethodazole and trimethoprim tablets, sulfamethosazole and trimethoprim tablets, sulfamethoxzzole and trimethoprim tablets, sulfamethoxszole and trimethoprim tablets, sulfamethoxwzole and trimethoprim tablets, sulfamethoxqzole and trimethoprim tablets, sulfamethoxaxole and trimethoprim tablets, sulfamethoxasole and trimethoprim tablets, sulfamethoxaaole and trimethoprim tablets, sulfamethoxazile and trimethoprim tablets, sulfamethoxazkle and trimethoprim tablets, sulfamethoxazlle and trimethoprim tablets, sulfamethoxazple and trimethoprim tablets, sulfamethoxaz0le and trimethoprim tablets, sulfamethoxaz9le and trimethoprim tablets, sulfamethoxazoke and trimethoprim tablets, sulfamethoxazope and trimethoprim tablets, sulfamethoxazooe and trimethoprim tablets, sulfamethoxazolw and trimethoprim tablets, sulfamethoxazols and trimethoprim tablets, sulfamethoxazold and trimethoprim tablets, sulfamethoxazolr and trimethoprim tablets, sulfamethoxazol4 and trimethoprim tablets, sulfamethoxazol3 and trimethoprim tablets, sulfamethoxazole znd trimethoprim tablets, sulfamethoxazole snd trimethoprim tablets, sulfamethoxazole wnd trimethoprim tablets, sulfamethoxazole qnd trimethoprim tablets, sulfamethoxazole abd trimethoprim tablets, sulfamethoxazole amd trimethoprim tablets, sulfamethoxazole ajd trimethoprim tablets, sulfamethoxazole ahd trimethoprim tablets, sulfamethoxazole ans trimethoprim tablets, sulfamethoxazole anx trimethoprim tablets, sulfamethoxazole anc trimethoprim tablets, sulfamethoxazole anf trimethoprim tablets, sulfamethoxazole anr trimethoprim tablets, sulfamethoxazole ane trimethoprim tablets, sulfamethoxazole and rrimethoprim tablets, sulfamethoxazole and frimethoprim tablets, sulfamethoxazole and grimethoprim tablets, sulfamethoxazole and yrimethoprim tablets, sulfamethoxazole and 6rimethoprim tablets, sulfamethoxazole and 5rimethoprim tablets, sulfamethoxazole and teimethoprim tablets, sulfamethoxazole and tdimethoprim tablets, sulfamethoxazole and tfimethoprim tablets, sulfamethoxazole and ttimethoprim tablets, sulfamethoxazole and t5imethoprim tablets, sulfamethoxazole and t4imethoprim tablets, sulfamethoxazole and trumethoprim tablets, sulfamethoxazole and trjmethoprim tablets, sulfamethoxazole and trkmethoprim tablets, sulfamethoxazole and tromethoprim tablets, sulfamethoxazole and tr9methoprim tablets, sulfamethoxazole and tr8methoprim tablets, sulfamethoxazole and trinethoprim tablets, sulfamethoxazole and trikethoprim tablets, sulfamethoxazole and trijethoprim tablets, sulfamethoxazole and trimwthoprim tablets, sulfamethoxazole and trimsthoprim tablets, sulfamethoxazole and trimdthoprim tablets, sulfamethoxazole and trimrthoprim tablets, sulfamethoxazole and trim4thoprim tablets, sulfamethoxazole and trim3thoprim tablets, sulfamethoxazole and trimerhoprim tablets, sulfamethoxazole and trimefhoprim tablets, sulfamethoxazole and trimeghoprim tablets, sulfamethoxazole and trimeyhoprim tablets, sulfamethoxazole and trime6hoprim tablets, sulfamethoxazole and trime5hoprim tablets, sulfamethoxazole and trimetgoprim tablets, sulfamethoxazole and trimetboprim tablets, sulfamethoxazole and trimetnoprim tablets, sulfamethoxazole and trimetjoprim tablets, sulfamethoxazole and trimetuoprim tablets, sulfamethoxazole and trimetyoprim tablets, sulfamethoxazole and trimethiprim tablets, sulfamethoxazole and trimethkprim tablets, sulfamethoxazole and trimethlprim tablets, sulfamethoxazole and trimethpprim tablets, sulfamethoxazole and trimeth0prim tablets, sulfamethoxazole and trimeth9prim tablets, sulfamethoxazole and trimethoorim tablets, sulfamethoxazole and trimetholrim tablets, sulfamethoxazole and trimetho-rim tablets, sulfamethoxazole and trimetho0rim tablets, sulfamethoxazole and trimethopeim tablets, sulfamethoxazole and trimethopdim tablets, sulfamethoxazole and trimethopfim tablets, sulfamethoxazole and trimethoptim tablets, sulfamethoxazole and trimethop5im tablets, sulfamethoxazole and trimethop4im tablets, sulfamethoxazole and trimethoprum tablets, sulfamethoxazole and trimethoprjm tablets, sulfamethoxazole and trimethoprkm tablets, sulfamethoxazole and trimethoprom tablets, sulfamethoxazole and trimethopr9m tablets, sulfamethoxazole and trimethopr8m tablets, sulfamethoxazole and trimethoprin tablets, sulfamethoxazole and trimethoprik tablets, sulfamethoxazole and trimethoprij tablets, sulfamethoxazole and trimethoprim rablets, sulfamethoxazole and trimethoprim fablets, sulfamethoxazole and trimethoprim gablets, sulfamethoxazole and trimethoprim yablets, sulfamethoxazole and trimethoprim 6ablets, sulfamethoxazole and trimethoprim 5ablets, sulfamethoxazole and trimethoprim tzblets, sulfamethoxazole and trimethoprim tsblets, sulfamethoxazole and trimethoprim twblets, sulfamethoxazole and trimethoprim tqblets, sulfamethoxazole and trimethoprim tavlets, sulfamethoxazole and trimethoprim tanlets, sulfamethoxazole and trimethoprim tahlets, sulfamethoxazole and trimethoprim taglets, sulfamethoxazole and trimethoprim tabkets, sulfamethoxazole and trimethoprim tabpets, sulfamethoxazole and trimethoprim taboets, sulfamethoxazole and trimethoprim tablwts, sulfamethoxazole and trimethoprim tablsts, sulfamethoxazole and trimethoprim tabldts, sulfamethoxazole and trimethoprim tablrts, sulfamethoxazole and trimethoprim tabl4ts, sulfamethoxazole and trimethoprim tabl3ts, sulfamethoxazole and trimethoprim tablers, sulfamethoxazole and trimethoprim tablefs, sulfamethoxazole and trimethoprim tablegs, sulfamethoxazole and trimethoprim tableys, sulfamethoxazole and trimethoprim table6s, sulfamethoxazole and trimethoprim table5s, sulfamethoxazole and trimethoprim tableta, sulfamethoxazole and trimethoprim tabletz, sulfamethoxazole and trimethoprim tabletx, sulfamethoxazole and trimethoprim tabletd, sulfamethoxazole and trimethoprim tablete, sulfamethoxazole and trimethoprim tabletw, ulfamethoxazole and trimethoprim tablets, slfamethoxazole and trimethoprim tablets, sufamethoxazole and trimethoprim tablets, sulamethoxazole and trimethoprim tablets, sulfmethoxazole and trimethoprim tablets, sulfaethoxazole and trimethoprim tablets, sulfamthoxazole and trimethoprim tablets, sulfamehoxazole and trimethoprim tablets, sulfametoxazole and trimethoprim tablets, sulfamethxazole and trimethoprim tablets, sulfamethoazole and trimethoprim tablets, sulfamethoxzole and trimethoprim tablets, sulfamethoxaole and trimethoprim tablets, sulfamethoxazle and trimethoprim tablets, sulfamethoxazoe and trimethoprim tablets, sulfamethoxazol and trimethoprim tablets, sulfamethoxazoleand trimethoprim tablets, sulfamethoxazole nd trimethoprim tablets, sulfamethoxazole ad trimethoprim tablets, sulfamethoxazole an trimethoprim tablets, sulfamethoxazole andtrimethoprim tablets, sulfamethoxazole and rimethoprim tablets, sulfamethoxazole and timethoprim tablets, sulfamethoxazole and trmethoprim tablets, sulfamethoxazole and triethoprim tablets, sulfamethoxazole and trimthoprim tablets, sulfamethoxazole and trimehoprim tablets, sulfamethoxazole and trimetoprim tablets, sulfamethoxazole and trimethprim tablets, sulfamethoxazole and trimethorim tablets, sulfamethoxazole and trimethopim tablets, sulfamethoxazole and trimethoprm tablets, sulfamethoxazole and trimethopri tablets, sulfamethoxazole and trimethoprimtablets, sulfamethoxazole and trimethoprim ablets, sulfamethoxazole and trimethoprim tblets, sulfamethoxazole and trimethoprim talets, sulfamethoxazole and trimethoprim tabets, sulfamethoxazole and trimethoprim tablts, sulfamethoxazole and trimethoprim tables, sulfamethoxazole and trimethoprim tablet, uslfamethoxazole and trimethoprim tablets, slufamethoxazole and trimethoprim tablets, suflamethoxazole and trimethoprim tablets, sulafmethoxazole and trimethoprim tablets, sulfmaethoxazole and trimethoprim tablets, sulfaemthoxazole and trimethoprim tablets, sulfamtehoxazole and trimethoprim tablets, sulfamehtoxazole and trimethoprim tablets, sulfametohxazole and trimethoprim tablets, sulfamethxoazole and trimethoprim tablets, sulfamethoaxzole and trimethoprim tablets, sulfamethoxzaole and trimethoprim tablets, sulfamethoxaozle and trimethoprim tablets, sulfamethoxazloe and trimethoprim tablets, sulfamethoxazoel and trimethoprim tablets, sulfamethoxazol eand trimethoprim tablets, sulfamethoxazolea nd trimethoprim tablets, sulfamethoxazole nad trimethoprim tablets, sulfamethoxazole adn trimethoprim tablets, sulfamethoxazole an dtrimethoprim tablets, sulfamethoxazole andt rimethoprim tablets, sulfamethoxazole and rtimethoprim tablets, sulfamethoxazole and tirmethoprim tablets, sulfamethoxazole and trmiethoprim tablets, sulfamethoxazole and triemthoprim tablets, sulfamethoxazole and trimtehoprim tablets, sulfamethoxazole and trimehtoprim tablets, sulfamethoxazole and trimetohprim tablets, sulfamethoxazole and trimethporim tablets, sulfamethoxazole and trimethorpim tablets, sulfamethoxazole and trimethopirm tablets, sulfamethoxazole and trimethoprmi tablets, sulfamethoxazole and trimethopri mtablets, sulfamethoxazole and trimethoprimt ablets, sulfamethoxazole and trimethoprim atblets, sulfamethoxazole and trimethoprim tbalets, sulfamethoxazole and trimethoprim talbets, sulfamethoxazole and trimethoprim tabelts, sulfamethoxazole and trimethoprim tabltes, sulfamethoxazole and trimethoprim tablest, ssulfamethoxazole and trimethoprim tablets, suulfamethoxazole and trimethoprim tablets, sullfamethoxazole and trimethoprim tablets, sulffamethoxazole and trimethoprim tablets, sulfaamethoxazole and trimethoprim tablets, sulfammethoxazole and trimethoprim tablets, sulfameethoxazole and trimethoprim tablets, sulfametthoxazole and trimethoprim tablets, sulfamethhoxazole and trimethoprim tablets, sulfamethooxazole and trimethoprim tablets, sulfamethoxxazole and trimethoprim tablets, sulfamethoxaazole and trimethoprim tablets, sulfamethoxazzole and trimethoprim tablets, sulfamethoxazoole and trimethoprim tablets, sulfamethoxazolle and trimethoprim tablets, sulfamethoxazolee and trimethoprim tablets, sulfamethoxazole and trimethoprim tablets, sulfamethoxazole aand trimethoprim tablets, sulfamethoxazole annd trimethoprim tablets, sulfamethoxazole andd trimethoprim tablets, sulfamethoxazole and trimethoprim tablets, sulfamethoxazole and ttrimethoprim tablets, sulfamethoxazole and trrimethoprim tablets, sulfamethoxazole and triimethoprim tablets, sulfamethoxazole and trimmethoprim tablets, sulfamethoxazole and trimeethoprim tablets, sulfamethoxazole and trimetthoprim tablets, sulfamethoxazole and trimethhoprim tablets, sulfamethoxazole and trimethooprim tablets, sulfamethoxazole and trimethopprim tablets, sulfamethoxazole and trimethoprrim tablets, sulfamethoxazole and trimethopriim tablets, sulfamethoxazole and trimethoprimm tablets, sulfamethoxazole and trimethoprim tablets, sulfamethoxazole and trimethoprim ttablets, sulfamethoxazole and trimethoprim taablets, sulfamethoxazole and trimethoprim tabblets, sulfamethoxazole and trimethoprim tabllets, sulfamethoxazole and trimethoprim tableets, sulfamethoxazole and trimethoprim tabletts, sulfamethoxazole and trimethoprim tabletss, etc.



© Copyright by drug-information.ru 2001-2019. All rights reserved