Gengraf Capsules

drug-information.ru

|Gengraf Capsules

Drugs search, click the first letter of a drug name:


| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9  Home

Gengraf


Generic Name: cyclosporine
Dosage Form: Capsules

WARNING

Only physicians experienced in the management of systemic immunosuppressive therapy for the indicated disease should prescribe Gengraf (cyclosporine capsules, USP [MODIFIED]). At doses used in solid organ transplantation, only physicians experienced in immunosuppressive therapy and management of organ transplant recipients should prescribe Gengraf. Patients receiving the drug should be managed in facilities equipped and staffed with adequate laboratory and supportive medical resources. The physician responsible for maintenance therapy should have complete information requisite for the follow-up of the patient.

Gengraf, a systemic immunosuppressant, may increase the susceptibility to infection and the development of neoplasia. In kidney, liver, and heart transplant patients Gengraf may be administered with other immunosuppressive agents. Increased susceptibility to infection and the possible development of lymphoma and other neoplasms may result from the increase in the degree of immunosuppression in transplant patients.

Gengraf (cyclosporine capsules, USP [MODIFIED ]) has increased bioavailability in comparison to Sandimmune®* (cyclosporine capsules, USP). Gengraf and Sandimmune* are not bioequivalent and cannot be used interchangeably without physician supervision. For a given trough concentration, cyclosporine exposure will be greater with Gengraf than with Sandimmune.* If a patient who is receiving exceptionally high doses of Sandimmune* is converted to Gengraf, particular caution should be exercised. Cyclosporine blood concentrations should be monitored in transplant and rheumatoid arthritis patients taking Gengraf to avoid toxicity due to high concentrations. Dose adjustments should be made in transplant patients to minimize possible organ rejection due to low concentrations. Comparison of blood concentrations in the published literature with blood concentrations obtained using current assays must be done with detailed knowledge of the assay methods employed.

For Psoriasis Patients (see also BOXED WARNINGS above)

Psoriasis patients previously treated with PUVA and to a lesser extent, methotrexate or other immunosuppressive agents, UVB, coal tar, or radiation therapy, are at an increased risk of developing skin malignancies when taking Gengraf (cyclosporine capsules, USP [MODIFIED ]).

Cyclosporine, the active ingredient in Gengraf, in recommended dosages, can cause systemic hypertension and nephrotoxicity. The risk increases with increasing dose and duration of cyclosporine therapy. Renal dysfunction, including structural kidney damage, is a potential consequence of cyclosporine, and therefore, renal function must be monitored during therapy.

Gengraf Description

Gengraf (cyclosporine capsules, USP [MODIFIED]) is a modified oral formulation of cyclosporine that forms an aqueous dispersion in an aqueous environment.

Cyclosporine, the active principle in Gengraf, is a cyclic polypeptide immunosuppressant agent consisting of 11 amino acids. It is produced as a metabolite by the fungus species Aphanocladium album.

Chemically, cyclosporine is designated as [R - [R*,R* - (E)]] - cyclic - (L - alanyl - D - alanyl - N - methyl - L - leucyl - N - methyl - L - leucyl - N - methyl - L - valyl - 3 - hydroxy - N,4 - dimethyl - L-2-amino-6-octenoyl-L-α-amino-butyryl-N-methylglycyl-N -methyl-L-leucyl-L-valyl-N-methyl-L-leucyl).

Gengraf Capsules (cyclosporine capsules, USP [MODIFIED]) are available in 25 mg and 100 mg strengths.

Each 25 mg capsule contains

cyclosporine, 25 mg, alcohol, USP, absolute, 12.8% v/v (10.1% wt/vol.).

Each 100 mg capsule contains

cyclosporine, 100 mg, alcohol, USP, absolute, 12.8% v/v (10.1% wt/vol.).

Inactive Ingredients

FD&C Blue No. 2, gelatin NF, polyethylene glycol NF, polyoxyl 35 castor oil NF, polysorbate 80 NF, propylene glycol USP, sorbitan monooleate NF, titanium dioxide.

The chemical structure for cyclosporine USP is:

Gengraf - Clinical Pharmacology

Cyclosporine is a potent immunosuppressive agent that in animals prolongs survival of allogeneic transplants involving skin, kidney, liver, heart, pancreas, bone marrow, small intestine, and lung. Cyclosporine has been demonstrated to suppress some humoral immunity and to a greater extent, cell-mediated immune reactions such as allograft rejection, delayed hypersensitivity, experimental allergic encephalomyelitis, Freund"s adjuvant arthritis, and graft vs. host disease in many animal species for a variety of organs.

The effectiveness of cyclosporine results from specific and reversible inhibition of immunocompetent lymphocytes in the G0- and G1-phase of the cell cycle. T-lymphocytes are preferentially inhibited. The T-helper cell is the main target, although the T-suppressor cell may also be suppressed. Cyclosporine also inhibits lymphokine production and release including interleukin-2.

No effects on phagocytic function (changes in enzyme secretions, chemotactic migration of granulocytes, macrophage migration, carbon clearance in vivo) have been detected in animals. Cyclosporine does not cause bone marrow suppression in animal models or man.

Pharmacokinetics

The immunosuppressive activity of cyclosporine is primarily due to parent drug. Following oral administration, absorption of cyclosporine is incomplete. The extent of absorption of cyclosporine is dependent on the individual patient, the patient population, and the formulation. Elimination of cyclosporine is primarily biliary with only 6% of the dose (parent drug and metabolites) excreted in urine. The disposition of cyclosporine from blood is generally biphasic, with a terminal half-life of approximately 8.4 hours (range 5 to 18 hours). Following intravenous administration, the blood clearance of cyclosporine (assay: HPLC) is approximately 5 to 7 mL/min/kg in adult recipients of renal or liver allografts. Blood cyclosporine clearance appears to be slightly slower in cardiac transplant patients.

The Gengraf Capsules (cyclosporine capsules, USP [MODIFIED]) and Gengraf Oral Solution (cyclosporine oral solution, USP [MODIFIED]) are bioequivalent.

The relationship between administered dose and exposure (area under the concentration versus time curve, AUC) is linear within the therapeutic dose range. The intersubject variability (total, % CV) of cyclosporine exposure (AUC) when cyclosporine (MODIFIED) or Sandimmune® is administered ranges from approximately 20% to 50% in renal transplant patients. This intersubject variability contributes to the need for individualization of the dosing regimen for optimal therapy (see DOSAGE AND ADMINISTRATION ). Intrasubject variability of AUC in renal transplant recipients (% CV) was 9%-21% for cyclosporine (MODIFIED) and 19%-26% for Sandimmune®. In the same studies, intrasubject variability of trough concentrations (% CV) was 17%-30% for cyclosporine (MODIFIED) and 16%-38% for Sandimmune®.

Absorption

Cyclosporine (MODIFIED) has increased bioavailability compared to Sandimmune®. The absolute bioavailability of cyclosporine administered as Sandimmune is dependent on the patient population, estimated to be less than 10% in liver transplant patients and as great as 89% in some renal transplant patients. The absolute bioavailability of cyclosporine administered as cyclosporine (MODIFIED) has not been determined in adults. In studies of renal transplant, rheumatoid arthritis and psoriasis patients, the mean cyclosporine AUC was approximately 20% to 50% greater and the peak blood cyclosporine concentration (Cmax) was approximately 40% to 106% greater following administration of cyclosporine (MODIFIED) compared to following administration of Sandimmune® . The dose normalized AUC in de novo liver transplant patients administered cyclosporine (MODIFIED) 28 days after transplantation was 50% greater and Cmax was 90% greater than in those patients administered Sandimmune®. AUC and Cmax are also increased (cyclosporine [MODIFIED] relative to cyclosporine) in heart transplant patients, but data are very limited. Although the AUC and Cmax values are higher on cyclosporine (MODIFIED ) relative to Sandimmune® , the pre-dose trough concentrations (dose-normalized) are similar for the two formulations.

Following oral administration of cyclosporine (MODIFIED), the time to peak blood cyclosporine concentrations (Tmax) ranged from 1.5 to 2.0 hours. The administration of food with cyclosporine (MODIFIED) decreases the cyclosporine AUC and Cmax. A high fat meal (669 kcal, 45 grams fat) consumed within one-half hour before cyclosporine (MODIFIED) administration decreased the AUC by 13% and Cmax by 33%. The effects of a low fat meal (667 kcal, 15 grams fat) were similar.

The effect of T-tube diversion of bile on the absorption of cyclosporine from cyclosporine (MODIFIED) was investigated in eleven de novo liver transplant patients. When the patients were administered cyclosporine (MODIFIED) with and without T-tube diversion of bile, very little difference in absorption was observed, as measured by the change in maximal cyclosporine blood concentrations from pre-dose values with the T-tube closed relative to when it was open: 6.9 ± 41% (range -55% to 68%).

Pharmacokinetic Parameters (mean±SD)
Patient Population Dose/day1
(mg/d)
Dose/ weight
(mg/kg/d)
AUC2
(ng·hr/mL)
Cmax
(ng/mL)
Trough3
(ng/mL)
CL/F
(mL/min)
CL/F
(mL/min/kg)

1 Total daily dose was divided into two doses administered every 12 hours.

2 AUC was measured over one dosing interval.

3 Trough concentration was measured just prior to the morning cyclosporine (MODIFIED) dose, approximately 12 hours after the previous dose.

4 Assay: TDx specific monoclonal fluorescence polarization immunoassay.

5 Assay: Cyclo-trac specific monoclonal radioimmunoassay.

6 Assay: INCSTAR specific monoclonal radioimmunoassay.

De novorenal transplant4
Week 4
(N = 37)
597 ± 174 7.95 ± 2.81 8772 ± 2089 1802 ± 428 361 ± 129 593 ± 204 7.8 ± 2.9
Stable renal transplant4 (N = 55) 344 ± 122 4.10 ± 1.58 6035 ± 2194 1333 ± 469 251 ± 116 492 ± 140 5.9 ± 2.1
De novoliver transplant5
Week 4
(N = 18)
458 ± 190 6.89 ± 3.68 7187 ± 2816 1555 ± 740 268 ± 101 577 ± 309 8.6 ± 5.7
De novorheumatoid arthritis6
(N = 23)
182 ± 55.6 2.37 ± 0.36 2641 ± 877 728 ± 263 96.4 ± 37.7 613 ± 196 8.3 ± 2.8
De novopsoriasis6
Week 4
(N = 18)
189 ± 69.8 2.48 ± 0.65 2324 ± 1048 655 ± 186 74.9 ± 46.7 723 ± 186 10.2 ± 3.9

Distribution

Cyclosporine is distributed largely outside the blood volume. The steady state volume of distribution during intravenous dosing has been reported as 3-5 L/kg in solid organ transplant recipients. In blood, the distribution is concentration dependent. Approximately 33%-47% is in plasma, 4%-9% in lymphocytes, 5%-12% in granulocytes, and 41%-58% in erythrocytes. At high concentrations, the binding capacity of leukocytes and erythrocytes becomes saturated. In plasma, approximately 90% is bound to proteins, primarily lipoproteins. Cyclosporine is excreted in human milk (see PRECAUTIONS - Nursing Mothers).

Metabolism

Cyclosporine is extensively metabolized by the cytochrome P-450 III-A enzyme system in the liver, and to a lesser degree in the gastrointestinal tract, and the kidney. The metabolism of cyclosporine can be altered by the coadministration of a variety of agents (see PRECAUTIONS - Drug Interactions). At least 25 metabolites have been identified from human bile, feces, blood, and urine. The biological activity of the metabolites and their contributions to toxicity are considerably less than those of the parent compound. The major metabolites (M1, M9, and M4N) result from oxidation at the 1-beta, 9-gamma, and 4-N-demethylated positions, respectively. At steady state following the oral administration of Sandimmune®, the mean AUCs for blood concentrations of M1, M9 and M4N are about 70%, 21%, and 7.5% of the AUC for blood cyclosporine concentrations, respectively. Based on blood concentration data from stable renal transplant patients (13 patients administered cyclosporine [MODIFIED] and Sandimmune® in a crossover study), and bile concentration data from de novo liver transplant patients (4 administered cyclosporine [MODIFIED], 3 administered Sandimmune®, the percentage of dose present as M1, M9, and M4N metabolites is similar when either cyclosporine (MODIFIED) or Sandimmune® is administered.

Excretion

Only 0.1% of a cyclosporine dose is excreted unchanged in the urine. Elimination is primarily biliary with only 6% of the dose (parent drug and metabolites) excreted in the urine. Neither dialysis nor renal failure alter cyclosporine clearance significantly.

Drug Interactions

(See PRECAUTIONS - Drug Interactions). When diclofenac or methotrexate was co-administered with cyclosporine in rheumatoid arthritis patients, the AUC of diclofenac and methotrexate, each was significantly increased (see PRECAUTIONS - Drug Interactions). No clinically significant pharmacokinetic interactions occurred between cyclosporine and aspirin, ketoprofen, piroxicam, or indomethacin.

Special Population

Pediatric Population

Pharmacokinetic data from pediatric patients administered cyclosporine (MODIFIED) or Sandimmune® are very limited. In 15 renal transplant patients aged 3-16 years, cyclosporine whole blood clearance after IV administration of Sandimmune® was 10.6 ± 3.7 mL/min/kg (assay: Cyclo-trac specific RIA). In a study of 7 renal transplant patients aged 2-16, the cyclosporine clearance ranged from 9.8 to 15.5 mL/min/kg. In 9 liver transplant patients aged 0.6 to 5.6 years, clearance was 9.3 ± 5.4 mL/min/kg (assay: HPLC).

In the pediatric population, cyclosporine (MODIFIED) also demonstrates an increased bioavailability as compared to Sandimmune®. In 7 liver de novo transplant patients aged 1.4 to 10 years, the absolute bioavailability of cyclosporine (MODIFIED) was 43% (range 30% to 68%) and for Sandimmune® in the same individuals absolute bioavailability was 28% (range 17% to 42%).

Pediatric Pharmacokinetic Parameters (mean ± SD)
Patient Population Dose/ day
(mg/d)
Dose/ weight
(mg/kg/d)
AUC1
(ng·hr/mL)
Cmax
(ng/mL)
CL/F
(mL/min)
CL/F
(mL/min/kg)

1 AUC was measured over one dosing interval.

2 Assay: Cyclo-trac specific monoclonal radioimmunoassay.

3 Assay: TDx specific monoclonal fluorescence polarization immunoassay.

Stable liver transplant2
Age 2-8, Dosed TID (N = 9) 101 ± 25 5.95 ± 1.32 2163 ± 801 629 ± 219 285 ± 94 16.6 ± 4.3
Age 8-15, Dosed BID (N = 8) 188 ± 55 4.96 ± 2.09 4272 ± 1462 975 ± 281 378 ± 80 10.2 ± 4.0
Stable liver transplant3
Age 3, Dosed BID (N = 1) 120 8.33 5832 1050 171 11.9
Age 8-15, Dosed BID (N = 5) 158 ± 55 5.51 ± 1.91 4452 ± 2475 1013 ± 635 328 ± 121 11.0 ± 1.9
Stable renal transplant3
Age 7-15, Dosed BID (N = 5) 328 ± 83 7.37 ± 4.11 6922 ± 1988 1827 ± 487 418 ± 143 8.7 ± 2.9

Geriatric Population

Comparison of single dose data from both normal elderly volunteers (N = 18, mean age 69 years) and elderly rheumatoid arthritis patients (N = 16, mean age 68 years) to single dose data in young adult volunteers (N = 16, mean age 26 years) showed no significant difference in the pharmacokinetic parameters.

Clinical Trials

Rheumatoid Arthritis

The effectiveness of Sandimmune® and cyclosporine (MODIFIED) in the treatment of severe rheumatoid arthritis was evaluated in five clinical studies involving a total of 728 cyclosporine treated patients and 273 placebo treated patients.

A summary of the results is presented for the "responder" rates per treatment group, with a responder being defined as a patient having completed the trial with a 20% improvement in the tender and the swollen joint count and a 20% improvement in 2 of 4 of investigator global, patient global, disability, and erythrocyte sedimentation rates (ESR) for the Studies 651 and 652 and 3 of 5 of investigator global, patient global, disability, visual analog pain, and ESR for Studies 2008, 654, and 302.

Study 651 enrolled 264 patients with active rheumatoid arthritis with at least 20 involved joints, who had failed at least one major RA drug, using a 3:3:2 randomization to one of the following three groups: (1) cyclosporine dosed at 2.5 to 5 mg/kg/day, (2) methotrexate at 7.5 to 15 mg/week, or (3) placebo. Treatment duration was 24 weeks. The mean cyclosporine dose at the last visit was 3.1 mg/kg/day. See Graph below.

Study 652 enrolled 250 patients with active RA with > 6 active painful or tender joints who had failed at least one major RA drug. Patients were randomized using a 3:3:2 randomization to 1 of 3 treatment arms: (1) 1.5 to 5 mg/kg/day of cyclosporine, (2) 2.5 to 5 mg/kg/day of cyclosporine, and (3) placebo. Treatment duration was 16 weeks. The mean cyclosporine dose for group 2 at the last visit was 2.92 mg/kg/day. See Graph below.

Study 2008 enrolled 144 patients with active RA and > 6 active joints who had unsuccessful treatment courses of aspirin and gold or Penicillamine. Patients were randomized to one of two treatment groups: (1) cyclosporine 2.5 to 5 mg/kg/day with adjustments after the first month to achieve a target trough level and (2) placebo. Treatment duration was 24 weeks. The mean cyclosporine dose at the last visit was 3.63 mg/kg/day. See Graph below.

Study 654 enrolled 148 patients who remained with active joint counts of 6 or more despite treatment with maximally tolerated methotrexate doses for at least three months. Patients continued to take their current dose of methotrexate and were randomized to receive, in addition, one of the following medications: (1) cyclosporine 2.5 mg/kg/day with dose increases of 0.5 mg/kg/day at Weeks 2 and 4 if there was no evidence of toxicity and further increases of 0.5 mg/kg/day at Weeks 8 and 16 if a < 30% decrease in active joint count occurred without any significant toxicity; dose decreases could be made at any time for toxicity or (2) placebo. Treatment duration was 24 weeks. The mean cyclosporine dose at the last visit was 2.8 mg/kg/day (range: 1.3 to 4.1). See Graph below.

Study 302 enrolled 299 patients with severe active RA, 99% of whom were unresponsive or intolerant to at least one prior major RA drug. Patients were randomized to 1 of 2 treatment groups (1) cyclosporine (MODIFIED) and (2) Sandimmune® both of which were started at 2.5 mg/kg/day and increased after 4 weeks for inefficacy in increments of 0.5 mg/kg/day to a maximum of 5 mg/kg/day and decreased at any time for toxicity. Treatment duration was 24 weeks. The mean cyclosporine dose at the last visit was 2.91 mg/kg/day (range: 0.72 to 5.17) for cyclosporine (MODIFIED) and 3.27 mg/kg/day (range: 0.73 to 5.68) for Sandimmune®. See Graph below.

Indications and Usage for Gengraf

Kidney, Liver and Heart Transplantation

Gengraf (cyclosporine capsules, USP [MODIFIED ]) is indicated for the prophylaxis of organ rejection in kidney, liver, and heart allogeneic transplants. Cyclosporine (MODIFIED ) has been used in combination with azathioprine and corticosteroids.

Rheumatoid Arthritis

Gengraf (cyclosporine capsules, USP [MODIFIED ]) is indicated for the treatment of patients with severe active, rheumatoid arthritis where the disease has not adequately responded to methotrexate. Gengraf can be used in combination with methotrexate in rheumatoid arthritis patients who do not respond adequately to methotrexate alone.

Psoriasis

Gengraf (cyclosporine capsules, USP [MODIFIED ]) is indicated for the treatment of adult, nonimmunocompromised patients with severe (i.e., extensive and/or disabling), recalcitrant, plaque psoriasis who have failed to respond to at least one systemic therapy (e.g., PUVA, retinoids, or methotrexate) or in patients for whom other systemic therapies are contraindicated, or cannot be tolerated.

While rebound rarely occurs, most patients will experience relapse with Gengraf as with other therapies upon cessation of treatment.

Contraindications

General

Gengraf (cyclosporine capsules, USP [MODIFIED ]) is contraindicated in patients with a hypersensitivity to cyclosporine or to any of the ingredients of the formulation.

Rheumatoid Arthritis

Rheumatoid arthritis patients with abnormal renal function, uncontrolled hypertension or malignancies should not receive Gengraf (cyclosporine capsules, USP [MODIFIED]).

Psoriasis

Psoriasis patients who are treated with Gengraf (cyclosporine capsules, USP [MODIFIED]) should not receive concomitant PUVA or UVB therapy, methotrexate or other immunosuppressive agents, coal tar or radiation therapy. Psoriasis patients with abnormal renal function, uncontrolled hypertension, or malignancies should not receive Gengraf.

Warnings

(See also BOXED WARNINGS).

All Patients

Cyclosporine, the active ingredient of Gengraf (cyclosporine capsules, USP [MODIFIED]), can cause nephrotoxicity and hepatotoxicity. The risk increases with increasing doses of cyclosporine. Renal dysfunction including structural kidney damage is a potential consequence of Gengraf and therefore renal function must be monitored during therapy.Care should be taken in using cyclosporine with nephrotoxic drugs (see PRECAUTIONS).

Patients receiving Gengraf require frequent monitoring of serum creatinine (see Special Monitoring under DOSAGE AND ADMINISTRATION). Elderly patients should be monitored with particular care, since decreases in renal function also occur with age. If patients are not properly monitored and doses are not properly adjusted, cyclosporine therapy can be associated with the occurrence of structural kidney damage and persistent renal dysfunction.

An increase in serum creatinine and BUN may occur during Gengraf therapy and reflect a reduction in the glomerular filtration rate. Impaired renal function at any time requires close monitoring, and frequent dosage adjustment may be indicated. The frequency and severity of serum creatinine elevations increase with dose and duration of cyclosporine therapy. These elevations are likely to become more pronounced without dose reduction or discontinuation.

Because Gengraf (cyclosporine capsules, USP [MODIFIED]) is not bioequivalent to Sandimmune (Cyclosporine Capsules), conversion from Gengraf to Sandimmune using a 1:1 ratio (mg/kg/day) may result in lower cyclosporine blood concentrations. Conversion from Gengraf to Sandimmune should be made with increased monitoring to avoid the potential of underdosing.

Kidney, Liver, and Heart Transplant

Cyclosporine, the active ingredient of Gengraf (cyclosporine capsules, USP [MODIFIED]), can cause nephrotoxicity and hepatotoxicity when used in high doses. It is not unusual for serum creatinine and BUN levels to be elevated during cyclosporine therapy. These elevations in renal transplant patients do not necessarily indicate rejection, and each patient must be fully evaluated before dosage adjustment is initiated.

Based on the historical Sandimmune® experience with oral solution, nephrotoxicity associated with cyclosporine had been noted in 25% of cases of renal transplantation, 38% of cases of cardiac transplantation, and 37% of cases of liver transplantation. Mild nephrotoxicity was generally noted 2-3 months after renal transplant and consisted of an arrest in the fall of the pre-operative elevations of BUN and creatinine at a range of 35-45 mg/dL and 2.0-2.5 mg/dL respectively. These elevations were often responsive to cyclosporine dosage reduction.

More overt nephrotoxicity was seen early after transplantation and was characterized by a rapidly rising BUN and creatinine. Since these events are similar to renal rejection episodes, care must be taken to differentiate between them. This form of nephrotoxicity is usually responsive to cyclosporine dosage reduction.

Although specific diagnostic criteria which reliably differentiate renal graft rejection from drug toxicity have not been found, a number of parameters have been significantly associated with one or the other. It should be noted however, that up to 20% of patients may have simultaneous nephrotoxicity and rejection.

Nephrotoxicity vs. Rejection
Parameter Nephrotoxicity Rejection

a p < 0.05, b p < 0.01, c p< 0.001, d p < 0.0001

History Donor > 50 years old or hypotensive Prolonged kidney preservation
Prolonged anastomosis time
Concomitant nephrotoxic drugs
Anti-donor immune response
Retransplant patient
Clinical Often > 6 weeks postopb
Prolonged initial nonfunction
(acute tubular necrosis)
Often < 4 weeks postopb
Fever > 37.5°C
Weight gain > 0.5 kg
Graft swelling and tenderness
Decrease in daily urine volume
> 500 mL (or 50%)
Laboratory CyA serum trough level > 200 ng/mL Gradual rise in Cr (< 0.15 mg/dL/day)a
Cr plateau < 25% above baseline
BUN/Cr ≥ 20
CyA serum trough level < 150 ng/mL Rapid rise in Cr (> 0.3 mg/dL/day)a
Cr > 25% above baseline
BUN/Cr < 20
Biopsy Arteriolopathy (medial hypertrophya, hyalinosis, nodular deposits, intimal thickening, endothelial vacuolization, progressive scarring)
Tubular atrophy, isometric vacuolization, isolated calcifications
Minimal edema
Mild focal infiltratesc
Diffuse interstitial fibrosis, often striped form
Endovasculitisc (proliferationa, intimal arteritisb, necrosis, sclerosis)

Tubulitis with RBCb and WBCb casts, some irregular vacuolization
Interstitial edemac and hemorrhageb
Diffuse moderate to severe mononuclear infiltratesd
Glomerulitis (mononuclear cells)c
Aspiration Cytology CyA deposits in tubular and endothelial cells
Fine isometric vacuolization of tubular cells
Inflammatory infiltrate with mononuclear phagocytes, macrophages, lymphoblastoid cells, and activated T-cells
These strongly express HLA-DR antigens
Urine Cytology Tubular cells with vacuolization and granularization Degenerative tubular cells, plasma cells, and lymphocyturia > 20% of sediment
Manometry
Ultrasonography
Intracapsular pressure < 40 mm Hgb
Unchanged graft cross sectional area
Intracapsular pressure > 40 mm Hgb
Increase in graft cross sectional area
AP diameter ≥ Transverse diameter
Magnetic Resonance Imagery Normal appearance Loss of distinct corticomedullary junction, swelling image intensity of parachyma approaching that of psoas, loss of hilar fat
Radionuclide Scan Normal or generally decreased perfusion
Decrease in tubular function
(131 I-hippuran) > decrease in perfusion
(99m Tc DTPA)
Patchy arterial flow
Decrease in perfusion > decrease in tubular function
Increased uptake of Indium 111 labeled platelets or Tc-99m in colloid
Therapy Responds to decreased cyclosporine Responds to increased steroids or antilymphocyte globulin

A form of a cyclosporine-associated nephropathy is characterized by serial deterioration in renal function and morphologic changes in the kidneys. From 5% to 15% of transplant recipients who have received cyclosporine will fail to show a reduction in rising serum creatinine despite a decrease or discontinuation of cyclosporine therapy. Renal biopsies from these patients will demonstrate one or several of the following alterations: tubular vacuolization, tubular microcalcifications, peritubular capillary congestion, arteriolopathy, and a striped form of interstitial fibrosis with tubular atrophy. Though none of these morphologic changes is entirely specific, a diagnosis of cyclosporine-associated structural nephrotoxicity requires evidence of these findings.

When considering the development of cyclosporine-associated nephropathy, it is noteworthy that several authors have reported an association between the appearance of interstitial fibrosis and higher cumulative doses or persistently high circulating trough levels of cyclosporine. This is particularly true during the first 6 post-transplant months when the dosage tends to be highest and when, in kidney recipients, the organ appears to be most vulnerable to the toxic effects of cyclosporine. Among other contributing factors to the development of interstitial fibrosis in these patients are prolonged perfusion time, warm ischemia time, as well as episodes of acute toxicity, and acute and chronic rejection. The reversibility of interstitial fibrosis and its correlation to renal function have not yet been determined. Reversibility of arteriolopathy has been reported after stopping cyclosporine or lowering the dosage.

Impaired renal function at any time requires close monitoring, and frequent dosage adjustment may be indicated.

In the event of severe and unremitting rejection, when rescue therapy with pulse steroids and monoclonal antibodies fail to reverse the rejection episode, it may be preferable to switch to alternative immunosuppressive therapy rather than increase the Gengraf dose to excessive levels.

Occasionally patients have developed a syndrome of thrombocytopenia and microangiopathic hemolytic anemia which may result in graft failure. The vasculopathy can occur in the absence of rejection and is accompanied by avid platelet consumption within the graft as demonstrated by Indium 111 labeled platelet studies. Neither the pathogenesis nor the management of this syndrome is clear. Though resolution has occurred after reduction or discontinuation of cyclosporine and 1) administration of streptokinase and heparin or 2) plasmapheresis, this appears to depend upon early detection with Indium 111 labeled platelet scans (see ADVERSE REACTlONS).

Significant hyperkalemia (sometimes associated with hyperchloremic metabolic acidosis) and hyperuricemia have been seen occasionally in individual patients.

Hepatotoxicity associated with cyclosporine use had been noted in 4% of cases of renal transplantation, 7% of cases of cardiac transplantation, and 4% of cases of liver transplantation. This was usually noted during the first month of therapy when high doses of cyclosporine were used and consisted of elevations of hepatic enzymes and bilirubin. The chemistry elevations usually decreased with a reduction in dosage.

As in patients receiving other immunosuppressants, those patients receiving cyclosporine are at increased risk for development of lymphomas and other malignancies, particularly those of the skin. The increased risk appears related to the intensity and duration of immunosuppression rather than to the use of specific agents. Because of the danger of oversuppression of the immune system resulting in increased risk of infection or malignancy, a treatment regimen containing multiple immunosuppressants should be used with caution.

There have been reports of convulsions in adult and pediatric patients receiving cyclosporine, particularly in combination with high dose methylprednisolone.

Encephalopathy has been described both in postmarketing reports and in the literature. Manifestations include impaired consciousness, convulsions, visual disturbances (including blindness), loss of motor function, movement disorders and psychiatric disturbances. In many cases, changes in the white matter have been detected using imaging techniques and pathologic specimens. Predisposing factors such as hypertension, hypomagnesemia, hypocholesterolemia, high-dose corticosteroids, high cyclosporine blood concentrations, and graft-versus-host disease have been noted in many but not all of the reported cases. The changes in most cases have been reversible upon discontinuation of cyclosporine, and in some cases improvement was noted after reduction of dose. It appears that patients receiving liver transplant are more susceptible to encephalopathy than those receiving kidney transplant. Another rare manifestation of cyclosporine-induced neurotoxicity, occurring in transplant patients more frequently than in other indications, is optic disc edema including papilloedema, with possible visual impairment, secondary to benign intracranial hypertension.

Care should be taken in using cyclosporine with nephrotoxic drugs (see PRECAUTIONS).

Rheumatoid Arthritis

Cyclosporine nephropathy was detected in renal biopsies of six out of 60 (10%) rheumatoid arthritis patients after the average treatment duration of 19 months. Only one patient, out of these 6 patients, was treated with a dose ≤ 4 mg/kg/day. Serum creatinine improved in all but one patient after discontinuation of cyclosporine. The "maximal creatinine increase" appears to be a factor in predicting cyclosporine nephropathy.

There is a potential, as with other immunosuppressive agents, for an increase in the occurrence of malignant lymphomas with cyclosporine. It is not clear whether the risk with cyclosporine is greater than that in Rheumatoid Arthritis patients or in Rheumatoid Arthritis patients on cytotoxic treatment for this indication. Five cases of lymphoma were detected: four in a survey of approximately 2,300 patients treated with cyclosporine for rheumatoid arthritis, and another case of lymphoma was reported in a clinical trial. Although other tumors (12 skin cancers, 24 solid tumors of diverse types, and 1 multiple myeloma) were also reported in this survey, epidemiologic analyses did not support a relationship to cyclosporine other than for malignant lymphomas.Patients should be thoroughly evaluated before and during Gengraf (cyclosporine capsules, USP [MODIFIED]) treatment for the development of malignancies. Moreover, use of Gengraf therapy with other immunosuppressive agents may induce an excessive immunosuppression which is known to increase the risk of malignancy.

Psoriasis

(See also BOXED WARNINGS for Psoriasis.)

Since cyclosporine is a potent immunosuppressive agent with a number of potentially serious side effects, the risks and benefits of using Gengraf (cyclosporine capsules, USP [MODIFIED]) should be considered before treatment of patients with psoriasis. Cyclosporine, the active ingredient in Gengraf, can cause nephrotoxicity and hypertension (see PRECAUTIONS) and the risk increases with increasing dose and duration of therapy. Patients who may be at increased risk such as those with abnormal renal function, uncontrolled hypertension or malignancies, should not receive Gengraf.

Renal dysfunction is a potential consequence of Gengraf, therefore renal function must be monitored during therapy.

Patients receiving Gengraf require frequent monitoring of serum creatinine (see Special Monitoring under DOSAGE AND ADMINISTRATION). Elderly patients should be monitored with particular care, since decreases in renal function also occur with age. If patients are not properly monitored and doses are not properly adjusted, cyclosporine therapy can cause structural kidney damage and persistent renal dysfunction.

An increase in serum creatinine and BUN may occur during Gengraf therapy and reflects a reduction in the glomerular filtration rate.

Kidney biopsies from 86 psoriasis patients treated for a mean duration of 23 months with 1.2 to 7.6 mg/kg/day of cyclosporine showed evidence of cyclosporine nephropathy in 18/86 (21%) of the patients. The pathology consisted of renal tubular atrophy and interstitial fibrosis. On repeat biopsy of 13 of these patients maintained on various dosages of cyclosporine for a mean of 2 additional years, the number with cyclosporine induced nephropathy rose to 26/86 (30%). The majority of patients (19/26) were on a dose of ≥ 5 mg/kg/day (the highest recommended dose is 4 mg/kg/day). The patients were also on cyclosporine for greater than 15 months (18/26) and/or had a clinically significant increase in serum creatinine for greater than 1 month (21/26). Creatinine levels returned to normal range in 7 of 11 patients in whom cyclosporine therapy was discontinued.

There is an increased risk for the development of skin and lymphoproliferative malignancies in cyclosporine-treated psoriasis patients. The relative risk of malignancies is comparable to that observed in psoriasis patients treated with other immunosuppressive agents.

Tumors were reported in 32 (2.2%) of 1439 psoriasis patients treated with cyclosporine worldwide from clinical trials. Additional tumors have been reported in 7 patients in cyclosporine postmarketing experience. Skin malignancies were reported in 16 (1.1%) of these patients; all but 2 of them had previously received PUVA therapy. Methotrexate was received by 7 patients. UVB and coal tar had been used by 2 and 3 patients, respectively. Seven patients had either a history of previous skin cancer or a potentially predisposing lesion was present prior to cyclosporine exposure. Of the 16 patients with skin cancer, 11 patients had 18 squamous cell carcinomas and 7 patients had 10 basal cell carcinomas.

There were two lymphoproliferative malignancies; one case of non-Hodgkin"s lymphoma which required chemotherapy, and one case of mycosis fungoides which regressed spontaneously upon discontinuation of cyclosporine. There were four cases of benign lymphocytic infiltration: 3 regressed spontaneously upon discontinuation of cyclosporine, while the fourth regressed despite continuation of the drug. The remainder of the malignancies, 13 cases (0.9%), involved various organs.

Patients should not be treated concurrently with cyclosporine and PUVA or UVB, other radiation therapy, or other immunosuppressive agents, because of the possibility of excessive immunosuppression and the subsequent risk of malignancies (see CONTRAINDICATIONS) . Patients should also be warned to protect themselves appropriately when in the sun, and to avoid excessive sun exposure. Patients should be thoroughly evaluated before and during treatment for the presence of malignancies remembering that malignant lesions may be hidden by psoriatic plaques. Skin lesions not typical of psoriasis should be biopsied before starting treatment. Patients should be treated with Gengraf (cyclosporine capsules, USP [MODIFIED]) only after complete resolution of suspicious lesions, and only if there are no other treatment options (see Special Monitoring for Psoriasis Patients).

Precautions

General

Hypertension

Cyclosporine is the active ingredient of Gengraf (cyclosporine capsules, USP [MODIFIED]). Hypertension is a common side effect of cyclosporine therapy which may persist (see ADVERSE REACTIONS and DOSAGE AND ADMINISTRATION for monitoring recommendations). Mild or moderate hypertension is encountered more frequently than severe hypertension and the incidence decreases over time. In recipients of kidney, liver, and heart allografts treated with cyclosporine, antihypertensive therapy may be required (see Special Monitoring of Rheumatoid Arthritis and Psoriasis Patients). However, since cyclosporine may cause hyperkalemia, potassium-sparing diuretics should not be used. While calcium antagonists can be effective agents in treating cyclosporine-associated hypertension, they can interfere with cyclosporine metabolism (see PRECAUTIONS - Drug Interactions).

Vaccination

During treatment with cyclosporine, vaccination may be less effective; and the use of live attenuated vaccines should be avoided.

Special Monitoring of Rheumatoid Arthritis Patients

Before initiating treatment, a careful physical examination, including blood pressure measurements (on at least two occasions) and two creatinine levels to estimate baseline should be performed. Blood pressure and serum creatinine should be evaluated every 2 weeks during the initial 3 months and then monthly if the patient is stable. It is advisable to monitor serum creatinine and blood pressure always after an increase of the dose of nonsteroidal anti-inflammatory drugs and after initiation of new nonsteroidal anti-inflammatory drug therapy during Gengraf (cyclosporine capsules, USP [MODIFIED]) treatment. If co-administered with methotrexate, CBC and liver function tests are recommended to be monitored monthly (see also PRECAUTIONS - General, Hypertension).

In patients who are receiving cyclosporine, the dose of Gengraf should be decreased by 25%-50% if hypertension occurs. If hypertension persists, the dose of Gengraf should be further reduced or blood pressure should be controlled with antihypertensive agents. In most cases, blood pressure has returned to baseline when cyclosporine was discontinued.

In placebo-controlled trials of rheumatoid arthritis patients, systolic hypertension (defined as an occurrence of two systolic blood pressure readings > 140 mmHg) and diastolic hypertension (defined as two diastolic blood pressure readings > 90 mmHg) occurred in 33% and 19% of patients treated with cyclosporine, respectively. The corresponding placebo rates were 22% and 8%.

Special Monitoring for Psoriasis Patients

Before initiating treatment, a careful dermatological and physical examination, including blood pressure measurements (on at least two occasions) should be performed. Since Gengraf (cyclosporine capsules, USP [MODIFIED]) is an immunosuppressive agent, patients should be evaluated for the presence of occult infection on their first physical examination and for the presence of tumors initially, and throughout treatment with Gengraf. Skin lesions not typical for psoriasis should be biopsied before starting Gengraf. Patients with malignant or premalignant changes of the skin should be treated with Gengraf only after appropriate treatment of such lesions and if no other treatment option exists.

Baseline laboratories should include serum creatinine (on two occasions), BUN, CBC, serum magnesium, potassium, uric acid, and lipids.

The risk of cyclosporine nephropathy is reduced when the starting dose is low (2.5 mg/kg/day), the maximum dose does not exceed 4 mg/kg/day, serum creatinine is monitored regularly while cyclosporine is administered, and the dose of Gengraf is decreased when the rise in creatinine is greater than or equal to 25% above the patients pretreatment level. The increase in creatinine is generally reversible upon timely decrease of the dose of Gengraf or its discontinuation.

Serum creatinine and BUN should be evaluated every 2 weeks during the initial 3 months of therapy and then monthly if the patient is stable. If the serum creatinine is greater than or equal to 25% above the patient"s pretreatment level, serum creatinine should be repeated within two weeks. If the change in serum creatinine remains greater than or equal to 25% above baseline, Gengraf should be reduced by 25%-50%. If at any time the serum creatinine increases by greater than or equal to 50% above pretreatment level, Gengraf should be reduced by 25%-50%. Gengraf should be discontinued if reversibility (within 25% of baseline) of serum creatinine is not achievable after two dosage modifications. It is advisable to monitor serum creatinine after an increase of the dose of nonsteroidal anti-inflammatory drug and after initiation of new nonsteroidal anti-inflammatory therapy during Gengraf treatment.

Blood pressure should be evaluated every 2 weeks during the initial 3 months of therapy and then monthly if the patient is stable, or more frequently when dosage adjustments are made. Patients without a history of previous hypertension before initiation of treatment with Gengraf, should have the drug reduced by 25%-50% if found to have sustained hypertension. If the patient continues to be hypertensive despite multiple reductions of Gengraf, then Gengraf should be discontinued. For patients with treated hypertension, before the initiation of Gengraf therapy, their medication should be adjusted to control hypertension while on Gengraf. Gengraf should be discontinued if a change in hypertension management is not effective or tolerable.

CBC, uric acid, potassium, lipids, and magnesium should also be monitored every 2 weeks for the first 3 months of therapy, and then monthly if the patient is stable or more frequently when dosage adjustments are made. Gengraf dosage should be reduced by 25%-50% for any abnormality of clinical concern.

In controlled trials of cyclosporine in psoriasis patients, cyclosporine blood concentrations did not correlate well with either improvement or with side effects such as renal dysfunction.

Information for Patients

Patients should be advised that any change of cyclosporine formulation should be made cautiously and only under physician supervision because it may result in the need for a change in dosage.

Patients should be informed of the necessity of repeated laboratory tests while they are receiving cyclosporine. Patients should be advised of the potential risks during pregnancy and informed of the increased risk of neoplasia. Patients should also be informed of the risk of hypertension and renal dysfunction.

Patients should be advised that during treatment with cyclosporine, vaccination may be less effective and the use of live attenuated vaccines should be avoided.

Patients should be advised to take Gengraf on a consistent schedule with regard to time of day and relation to meals. Grapefruit and grapefruit juice affect metabolism, increasing blood concentration of cyclosporine, thus should be avoided.

Laboratory Tests

In all patients treated with cyclosporine, renal and liver functions should be assessed repeatedly by measurement of serum creatinine, BUN, serum bilirubin, and liver enzymes. Serum lipids, magnesium, and potassium should also be monitored. Cyclosporine blood concentrations should be routinely monitored in transplant patients (see DOSAGE AND ADMINISTRATION - Blood Concentration Monitoring in Transplant Patients), and periodically monitored in rheumatoid arthritis patients.

Drug Interactions

All of the individual drugs cited below are well substantiated to interact with cyclosporine. In addition, concomitant non-steroidal anti-inflammatory drugs, particularly in the setting of dehydration, may potentiate renal dysfunction.

Drugs That May Potentiate Renal Dysfunction
Antibiotics Antineoplastics Anti-inflammatory Drugs Gastrointestinal Agents
ciprofloxacin melphalan azapropazon cimetidine
gentamicin colchicine ranitidine
tobramycin Antifungals diclofenac
vancomycin amphotericin B naproxen Immunosuppressives
trimethoprim with sulfamethoxazole ketoconazole sulindac
tacrolimus
Other Drugs
fibric acid derivatives
(e.g.,bezafibrate,fenofibrate)

Drugs That Alter Cyclosporine Concentrations

Compounds that decrease cyclosporine absorption such as orlistat should be avoided. Cyclosporine is extensively metabolized by cytochrome P-450 III-A. Substances that inhibit this enzyme could decrease metabolism and increase cyclosporine concentrations. Substances that are inducers of cytochrome P-450 activity could increase metabolism and decrease cyclosporine concentrations. Monitoring of circulating cyclosporine concentrations and appropriate Gengraf (cyclosporine capsules, USP [MODIFIED]) dosage adjustment are essential when these drugs are used concomitantly (see DOSAGE AND ADMINISTRATION - Blood Concentration Monitoring).

Drugs That Increase Cyclosporine Concentrations
Calcium Channel Blockers Antifungals Antibiotics Glucocorticoids Other Drugs
diltiazem fluconazole azithromycin methylprednisolone allopurinol
nicardipine itraconazole clarithromycin bromocriptine
verapamil ketoconazole erythromycin danazol
quinupristin/ metoclopramide
dalfopristin colchicine
amiodarone
imatinib
oral contraceptives

The HIV protease inhibitors (e.g., indinavir, nelfinavir, ritonavir, and saquinavir) are known to inhibit cytochrome P-450 III-A and thus could potentially increase the concentrations of cyclosporine, however no formal studies of the interaction are available. Care should be exercised when these drugs are administered concomitantly.

Grapefruit and grapefruit juice affect metabolism, increasing blood concentrations of cyclosporine, thus should be avoided.

Drugs/Dietary Supplements That Decrease Cyclosporine Concentrations
Antibiotics Anticonvulsants Other Drugs
nafcillin carbamazepine octreotide
rifampin phenobarbital ticlopidine
phenytoin orlistat
sulfinpyrazone
terbinafine
St. John"s Wort

There have been reports of a serious drug interaction between cyclosporine and the herbal dietary supplement, St. John"s Wort. This interaction has been reported to produce a marked reduction in the blood concentrations of cyclosporine, resulting in subtherapeutic levels, rejection of transplanted organs, and graft loss.

Rifabutin is known to increase the metabolism of other drugs metabolized by the cytochrome P-450 system. The interaction between rifabutin and cyclosporine has not been studied. Care should be exercised when these two drugs are administered concomitantly.

Nonsteroidal Anti-inflammatory Drug (NSAID) Interactions

Clinical status and serum creatinine should be closely monitored when cyclosporine is used with nonsteroidal anti-inflammatory agents in rheumatoid arthritis patients (see WARNINGS).

Pharmacodynamic interactions have been reported to occur between cyclosporine and both naproxen and sulindac, in that concomitant use is associated with additive decreases in renal function, as determined by 99mTc-diethylenetriaminepentaacetic acid (DTPA) and (p-aminohippuric acid) PAH clearances. Although concomitant administration of diclofenac does not affect blood levels of cyclosporine, it has been associated with approximate doubling of diclofenac blood levels and occasional reports of reversible decreases in renal function. Consequently, the dose of diclofenac should be in the lower end of the therapeutic range.

Methotrexate Interaction

Preliminary data indicate that when methotrexate and cyclosporine were co-administered to rheumatoid arthritis patients (N = 20), methotrexate concentrations (AUCs) were increased approximately 30% and the concentrations (AUCs) of its metabolite,7-hydroxy methotrexate, were decreased by approximately 80%. The clinical significance of this interaction is not known. Cyclosporine concentrations do not appear to have been altered (N = 6).

Other Drug Interactions

Cyclosporine may reduce the clearance of digoxin, colchicine, prednisolone, and HMG-CoA reductase inhibitors (statins). Severe digitalis toxicity has been seen within days of starting cyclosporine in several patients taking digoxin. There are also reports on the potential of cyclosporine to enhance the toxic effects of colchicine such as myopathy and neuropathy, especially in patients with renal dysfunction. If digoxin or colchicine are used concurrently with cyclosporine, close clinical observation is required in order to enable early detection of toxic manifestations of digoxin or colchicine, followed by reduction of dosage or its withdrawal.

Literature and postmarketing cases of myotoxicity, including muscle pain and weakness, myositis, and rhabdomyolysis, have been reported with concomitant administration of cyclosporine with lovastatin, simvastatin, atorvastatin, pravastatin, and, rarely, fluvastatin. When concurrently administered with cyclosporine, the dosage of these statins should be reduced according to label recommendations. Statin therapy needs to be temporarily withheld or discontinued in patients with signs and symptoms of myopathy or those with risk factors predisposing to severe renal injury, including renal failure, secondary to rhabdomyolysis.

Cyclosporine should not be used with potassium sparing diuretics because hyperkalemia can occur. Caution is also required when cyclosporine is co-administered with potassium sparing drugs (e.g. angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists), potassium containing drugs as well as in patients on a potassium rich diet. Control of potassium levels in these situations is advisable.

Elevations in serum creatinine were observed in studies using sirolimus in combination with fulldose cyclosporine.This effect is often reversible with cyclosporine dose reduction. Simultaneous co-administration of cyclosporine significantly increases blood levels of sirolimus. To minimize increases in sirolimus blood concentrations, it is recommended that sirolimus be given 4 hours after cyclosporine administration.

During treatment with cyclosporine, vaccination may be less effective. The use of live vaccines should be avoided. Frequent gingival hyperplasia with nifedipine, and convulsions with high dose methylprednisolone have been reported.

Psoriasis patients receiving other immunosuppressive agents or radiation therapy (including PUVA and UVB) should not receive concurrent cyclosporine because of the possibility of excessive immunosuppression.

For additional information on Cyclosporine Drug Interactions please contact Abbott Laboratories Medical Information Department at 1-800-633-9110.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity studies were carried out in male and female rats and mice. In the 78-week mouse study, evidence of a statistically significant trend was found for lymphocytic lymphomas in females, and the incidence of hepatocellular carcinomas in mid-dose males significantly exceeded the control value. In the 24-month rat study, pancreatic islet cell adenomas significantly exceeded the control rate in the low dose level. Doses used in the mouse and rat studies were 0.01 to 0.16 times the clinical maintenance dose (6 mg/kg). The hepatocellular carcinomas and pancreatic islet cell adenomas were not dose related. Published reports indicate the co-treatment of hairless mice with UV irradiation and cyclosporine or other immunosuppressive agents shorten the time to skin tumor formation compared to UV irradiation alone.

Cyclosporine was not mutagenic in appropriate test systems. Cyclosporine has not been found to be mutagenic/genotoxic in the Ames Test, the V79-HGPRT Test, the micronucleus test in mice and Chinese hamsters, the chromosome-aberration tests in Chinese hamster bone-marrow, the mouse dominant lethal assay, and the DNA-repair test in sperm from treated mice. A recent study analyzing sister chromatid exchange (SCE) induction by cyclosporine using human lymphocytes in vitro gaveindication of a positive effect (i.e., induction of SCE), at high concentrations in this system.

No impairment in fertility was demonstrated in studies in male and female rats.

Widely distributed papillomatosis of the skin was observed after chronic treatment of dogs with cyclosporine at 9 times the human initial psoriasis treatment dose of 2.5 mg/kg, where doses are expressed on a body surface area basis. This papillomatosis showed a spontaneous regression upon discontinuation of cyclosporine.

An increased incidence of malignancy is a recognized complication of immunosuppression in recipients of organ transplants and patients



Where can I get more information about Gengraf Capsules ? We recommend to use www.Drugs.com


Typical mistypes for Gengraf Capsules
fengraf capsules, vengraf capsules, bengraf capsules, hengraf capsules, yengraf capsules, tengraf capsules, gwngraf capsules, gsngraf capsules, gdngraf capsules, grngraf capsules, g4ngraf capsules, g3ngraf capsules, gebgraf capsules, gemgraf capsules, gejgraf capsules, gehgraf capsules, genfraf capsules, genvraf capsules, genbraf capsules, genhraf capsules, genyraf capsules, gentraf capsules, gengeaf capsules, gengdaf capsules, gengfaf capsules, gengtaf capsules, geng5af capsules, geng4af capsules, gengrzf capsules, gengrsf capsules, gengrwf capsules, gengrqf capsules, gengrad capsules, gengrac capsules, gengrav capsules, gengrag capsules, gengrat capsules, gengrar capsules, gengraf xapsules, gengraf vapsules, gengraf fapsules, gengraf dapsules, gengraf czpsules, gengraf cspsules, gengraf cwpsules, gengraf cqpsules, gengraf caosules, gengraf calsules, gengraf ca-sules, gengraf ca0sules, gengraf capaules, gengraf capzules, gengraf capxules, gengraf capdules, gengraf capeules, gengraf capwules, gengraf capsyles, gengraf capshles, gengraf capsjles, gengraf capsiles, gengraf caps8les, gengraf caps7les, gengraf capsukes, gengraf capsupes, gengraf capsuoes, gengraf capsulws, gengraf capsulss, gengraf capsulds, gengraf capsulrs, gengraf capsul4s, gengraf capsul3s, gengraf capsulea, gengraf capsulez, gengraf capsulex, gengraf capsuled, gengraf capsulee, gengraf capsulew, engraf capsules, gngraf capsules, gegraf capsules, genraf capsules, gengaf capsules, gengrf capsules, gengra capsules, gengrafcapsules, gengraf apsules, gengraf cpsules, gengraf casules, gengraf capules, gengraf capsles, gengraf capsues, gengraf capsuls, gengraf capsule, egngraf capsules, gnegraf capsules, gegnraf capsules, genrgaf capsules, gengarf capsules, gengrfa capsules, gengra fcapsules, gengrafc apsules, gengraf acpsules, gengraf cpasules, gengraf caspules, gengraf capusles, gengraf capslues, gengraf capsuels, gengraf capsulse, ggengraf capsules, geengraf capsules, genngraf capsules, genggraf capsules, gengrraf capsules, gengraaf capsules, gengraff capsules, gengraf capsules, gengraf ccapsules, gengraf caapsules, gengraf cappsules, gengraf capssules, gengraf capsuules, gengraf capsulles, gengraf capsulees, gengraf capsuless, etc.



© Copyright by drug-information.ru 2001-2019. All rights reserved